摘要:
On a surface of a semiconductor substrate within a device forming region, a MOS transistor including a gate electrode, gate oxide film and source•drain is formed. An insulating layer is formed on the surface of the semiconductor substrate. In an opening of the insulating layer above the source•drain, a tungsten plug is formed. At a dicing line portion, the insulating layer has a trench portion. The trench portion is formed to surround the device forming region. A tungsten street having a top surface continuous to the top surface of the insulating layer is formed in the trench. By this semiconductor device, short-circuit between bonding pads and the like can be prevented, and the reliability can be improved.
摘要:
A lower electrode of a capacitor for use in a semiconductor device includes a first semiconductor layer having a predetermined impurity concentration and a second semiconductor layer having an impurity concentration higher than that of the first semiconductor layer. As a result, intensification of an electric field at an end portion of the capacitor can be reduced. In addition, a word line is formed of a buffer layer and a main conductor layer to reduce a parasitic capacitance between the lower electrode of the capacitor and the word line.
摘要:
There is disclosed a semiconductor device including a plurality of P well regions (4) and a P well region (41) insulated from each other by a plurality of trench isolating layers (10) formed regularly in predetermined spaced relation with each other and having the same depth. The outermost P well region (41) isolatedly formed externally of an outermost trench isolating layer (10A) is made as deep as the trench isolating layers (10) and, accordingly, is made deeper than the P well regions (4) except the outermost P well region (41). This provides for the alleviation of the electric field concentration generated in the bottom edge of the outermost isolating layer of trench structure, thereby achieving the semiconductor device having an improved device breakdown voltage and a method of fabricating the same.
摘要:
A semiconductor device for element isolation comprises a semiconductor substrate having an impurity region of a first conductivity type whose impurity concentration attains the maximum at a predetermined depth from the surface in the depth direction, a trench formed to a predetermined depth in the impurity region of the first conductivity type, and an impurity diffusion region of the first conductivity type formed in the trench with an oxide film interposed and having only its bottom portion connected to the impurity region of the first conductivity type of the semiconductor substrate. In the semiconductor device, a uniform P.sup.+ high concentration region is substantially formed in a bottom portion of an isolation region, so that an isolation threshold value is not affected.
摘要:
A semiconductor device has an upper well of a first conductivity type formed from the surface of an active region separated by an isolation oxide film at the surface of a semiconductor substrate to a predetermined depth. A first conductivity type layer of high concentration is formed along the entire region of an active region to enclose the bottom of the upper well of the first conductivity type. A lower well of the first conductivity type of a predetermined thickness is formed as a buried layer to enclose the bottom of the first conductivity type layer of high concentration. According to this structure, the spreadout of impurities into the active region due to diffusion at the time of thermal treatment is suppressed. The semiconductor device has the wells and the buried layer of high concentration formed by implanting impurities after the step of forming the isolation oxide film, so that diffusion of impurities into the active region due to thermal treatment at the time of isolation oxide film formation is suppressed. As a result, degradation of channel effect is prevented in miniaturization of the semiconductor device.
摘要:
A method of forming a well on a semiconductor substrate and a transistor on the main surface of this well. A mask exposing a region for the well is formed on the main surface of the semiconductor substrate. Subsequently, ions of impurities for forming the well are implanted on the main surface of the region for the well of the semiconductor substrate using this mask with high energy giving concentration distribution of impurities which becomes maximum at a place deeper than a region for a transistor. Subsequently, ions of impurities of the same conductivity type as that of ions for forming the well are implanted on the main surface of the region for the well of the semiconductor substrate using the mask with low energy giving concentration distribution of impurities in which impurities stay in the region for the channel of the transistor. According to this method, since the formation of the well and channel ion implantation are performed using the same mask, the number of photolithography processes is decreased. In addition, in forming the well, since it is not necessary to diffuse the impurity ions by heat, manufacturing time can be shortened. In addition, since ions of impurities are implanted in the channel region of the transistor, a punch through of the transistor can be prevented.
摘要:
A semiconductor memory device comprises a capacitor and a transistor formed on a main surface of a semiconductor substrate and a buried layer of high impurity concentration formed in the substrate, wherein the buried layer has the same conductivity type as that of the substrate and is formed shallow under the capacitor and deep under the transistor.
摘要:
A semiconductor device and a method of manufacturing the same which comprises a semiconductor substrate and a conductive region formed thereon in multilayer structure of a film of refractory metal or refractory metal silicide inferior in corrosion resistance against a solution containing hydrofluoric acid and a film of refractory metal silicide excellent in corrosion resistance against the solution containing hydrofluorine acid and low electric resistance formed on the same.
摘要:
A process for preparing a semiconductor device having a walled emitter structure covering at least one side surface with a dielectric layer for separation of devices comprises a step of forming a base by implantation of ions with a resist mask for base; a step of forming an emitter by implantation of ions from an emitter-opening part; and a step of formation an active base in a base just below said emitter by implantation of ions from said emitter-opening part.
摘要:
A semiconductor memory device comprises a capacitor and a transistor formed on a main surface of a semiconductor substrate and a buried layer of high impurity concentration formed in the substrate, wherein the buried layer has the same conductivity type as that of the substrate and is formed shallow under the capacitor and deep under the transistor.