Abstract:
The disclosure relates to a wireless self-powered gas sensor based on electromagnetic oscillations triggered by external forces and its fabrication method. The sensor includes a gas test chamber, a first friction layer, a second friction layer, an interdigital electrode, a gas-sensitive material, an air inlet, an air outlet and leads. The gas sensor of the disclosure is an integrated detection system of “environmental energy collection—wireless energy transmission—active spontaneous detection” that can be driven simultaneously only by external mechanical movement, and can work independently without external power supply. The first friction layer and the second friction layer are arranged outside the gas test chamber. The frictional motion will not interfere with the flow field of the test chamber and the gas molecule absorption and desorption, which ensures the stability of gas detection to the greatest extent.
Abstract:
A preparation method of a vanadium oxide powder with high phase-transition latent heat includes steps of taking vanadium pentoxide, oxalic acid and PVP as raw materials, preparing a B-phase VO2 nano-powder modified by the PVP, and then annealing the B-phase VO2 nano-powder modified by the PVP at high temperature in an oxygen atmosphere, and obtaining the vanadium oxide powder with high phase-transition latent heat which includes M-phase VO2 with a mass percentage in a range of 96-99% and V6O13 with a mass percentage in a range of 1-4%, and has the phase-transition latent heat larger than 50 J/g. Compared with the vanadium oxide powder prepared by a traditional method without PVP modification and using a vacuum annealing process, the phase-transition latent heat of the vanadium oxide powder provided by the present invention is increased by at least 60%.
Abstract:
A method for improving peroxidase-like activity of nanozyme and a product thereof are disclosed, which relate to the field of artificial enzymes in biochemistry. The method adopts a hydrogen peroxide solution with high concentration to treat the VO2(B) powder for obtaining a product with high peroxidase-like activity. Compared with the pure VO2(B) powder, the peroxidase-like activity of the product obtained by the method is increased by 4 to 12 times. The method provided by the present invention adopts raw materials with low cost and mild reaction conditions, is simple in operation and low in cost, which is conducive to batch preparation. The powder product obtained by the method is able to be applied to detect hydrogen peroxide, glucose, etc., and has great application prospects in biosensing, industrial wastewater treatment and sewage treatment.
Abstract:
An optical-readout synaptic device based on SiOxNy and a preparation method thereof are provided. The device includes a surface plasmonic waveguide and a memristor; the surface plasmonic waveguide has a vertical three-layer structure that a second metal layer, a SiNx dielectric layer and a first metal layer are successively arranged from top to bottom; the memristor has a vertical four-layer structure that a second electrode layer, a second resistive layer, a first resistive layer and a first electrode layer are successively arranged from top to bottom; the memristor is embedded in the surface plasmonic waveguide; and, the first resistive layer and the second resistive layer of the memristor serve as an optical signal transmission channel that is horizontally connected with the SiNx dielectric layer of the surface plasmonic waveguide. The present invention realizes an optical-readout of synaptic weight and has incomparable advantages over a conventional electrical-readout synaptic device.
Abstract:
A system for testing thermal response time of an uncooled infrared focal plane detector array and a method therefor is provided. The system comprises: a blackbody, a chopper, a detector unit under test and a testing system. The method comprises: emitting radiation by the blackbody, chopping by the chopper, then radiating the radiation to the uncooled infrared focal plane detector array under test; generating different responses on the radiation at different chopping frequencies by the uncooled infrared focal plane detector array under test; collecting different response values of the uncooled infrared focal plane detector array under test at different chopping frequencies; obtaining response amplitude at a corresponding frequency in a frequency domain by FFT; fitting according to a formula Rv ( f ) = Rv ( 0 ) 1 + ( 2 π f τ ) 2 to obtain the thermal response time.
Abstract:
A vanadium oxide thermo-sensitive film material with a high temperature coefficient of resistance (TCR) contains a rare earth element of Yttrium serving as a dopant in a preparation process. The vanadium oxide thermo-sensitive film material includes a substrate and a yttrium-doped vanadium oxide film layer. The yttrium-doped vanadium oxide film layer includes three elements of vanadium, oxygen and yttrium, wherein the atomic concentration of yttrium is at a range of 1%-8%, the atomic concentration of vanadium is at a range of 20-40% and the residue is oxygen. The method for preparing the vanadium oxide thermo-sensitive film material with high TCR includes a reactive magnetron sputtering method using a low-concentration yttrium-vanadium alloy target as a sputtering source or a reactive magnetron co-sputtering method using dual targets including a high-concentration yttrium-vanadium alloy target and a pure vanadium target as a co-sputtering source.
Abstract:
A vanadium oxide thermo-sensitive film material with a high temperature coefficient of resistance (TCR) contains a rare earth element of Yttrium serving as a dopant in a preparation process. The vanadium oxide thermo-sensitive film material includes a substrate and a yttrium-doped vanadium oxide film layer. The yttrium-doped vanadium oxide film layer includes three elements of vanadium, oxygen and yttrium, wherein the atomic concentration of yttrium is at a range of 1%-8%, the atomic concentration of vanadium is at a range of 20-40% and the residue is oxygen. The method for preparing the vanadium oxide thermo-sensitive film material with high TCR includes a reactive magnetron sputtering method using a low-concentration yttrium-vanadium alloy target as a sputtering source or a reactive magnetron co-sputtering method using dual targets including a high-concentration yttrium-vanadium alloy target and a pure vanadium target as a co-sputtering source.
Abstract:
A calibration concentration selection method includes steps of: using a gas sensor array to obtain a concentration variation sequence and a response variation sequence of the gas mixture; constructing and training an AE-BP model; constructing VAE and identically distributing the response variation sequence; inputting the identically distributed response variation sequence into the trained AE-BP model to output a predicted concentration variation sequence; and then normalizing the predicted concentration variation sequence to generate a target concentration variation sequence; sorting a target concentration variation sequence and calculating a response gradient sequence; processing the response gradient sequence for obtaining a corresponding smoothed gradient sequence; if the spike is greater than a preset hyperparameter, finding a large gradient concentration interval; and selecting concentration test points by random uniform sampling according to weights; and selecting concentration test points from all other concentration intervals in the smoothed gradient sequence by random uniform sampling.
Abstract:
A breathing-driven flexible respiratory sensor includes: a test cavity and a digital electrometer, wherein an upper internal wall of the test cavity is provided with an upper detecting component, and a lower internal wall of the test cavity is provided with a lower detecting component; the upper detecting component and the lower detecting component is arranged in a longitudinal symmetry form; wherein the upper detecting component comprises a substrate, an electrode and a gas sensitive film bonded in sequence from top to bottom, and the substrate is bonded to the upper internal wall of the test cavity; wherein a rubber airbag is disposed in the test cavity, and a friction film is bonded to the rubber airbag; an air inlet cylinder is connected to a left end of the rubber airbag, and an air outlet cylinder is connected to a right end of the rubber airbag.
Abstract:
A transparent top electrode composite film for organic optoelectronic devices includes a substrate, an MoOx film layer coated on the substrate, a doped Ag-based film layer coated on the MoOx film layer and an HfOx film layer coated on the doped Ag-based film layer. A preparation method of the transparent top electrode composite film, which is achieved under vacuum and low temperature, includes steps of (A) depositing an MoOx film layer on a substrate through thermal evaporation process or electron beam evaporation process without heating the substrate; (B) depositing a doped Ag-based film layer on the MoOx film layer through sputtering process or evaporation process; and (C) depositing an HfOx film layer on the doped Ag-based film layer through reactive sputtering process, thereby obtaining the transparent top electrode composite film. The composite film is able to be used as a top electrode material for organic optoelectronic devices.