Abstract:
Embodiments of the present invention provide electronic devices such as OLEDs that have enhanced mechanical integrity and prolonged shelf, by minimizing the spread of a delamination region using topographical non-uniformities introduced in the device structure. For example, a device may be made deliberately non-planar by introducing multiple energy barriers which can prevent or minimize the propagation of a delamination, because the delamination will have to cross the energy barriers in order to spread to a larger area.
Abstract:
A novel thin film encapsulated OLED panel architecture and a method for making the panels with improved shelf life is disclosed. The OLED panel consists of a plurality of OLED pixels; each OLED pixel is individually hermetically sealed and isolated from its neighboring pixels. The organic stack of the OLED pixel is contained within its own hermetically sealed structure, achieved by making the structure on a barrier coated substrate and using a first barrier material as the grid and a second barrier for encapsulating the entire OLED pixel. The first barrier material provides the edge seal while the second barrier disposed over the pixel provides protection from top down moisture diffusion. By isolating and hermetically sealing individual pixels; any damage such as moisture and oxygen ingress due to defects or particles, delamination, cracking etc. can be effectively contained within the pixel thereby protecting other pixels in the panel.
Abstract:
A method of forming microelectronic systems on a flexible substrate includes depositing a plurality of layers on one side of the flexible substrate. Each of the plurality of layers is deposited from one of a plurality of sources. A vertical projection of a perimeter of each one of the plurality of sources does not intersect the flexible substrate. The flexible substrate is in motion during the depositing the plurality of layers via a roll to roll feed and retrieval system.
Abstract:
A first product may be provided that comprises a substrate having a first surface, a first side, and a first edge where the first surface meets the first side; and a device disposed over the substrate, the device having a second side, where at least a first portion of the second side is disposed within 3 mm from the first edge of the substrate. The first product may further comprise a first barrier film that covers at least a portion of the first edge of the substrate, at least a portion of the first side of the substrate, and at least the first portion of the second side of the device.
Abstract:
Methods for forming a coating over a surface are disclosed. A method includes directing a first source of barrier film material toward a substrate in a first direction at an angle θ relative to the substrate, wherein θ is greater than about 0° and less than about 85°. Additionally, a method of depositing a barrier film over a substrate includes directing a plurality of N sources of barrier film material toward a substrate, each source being directed at an angle θN relative to the substrate, wherein for each θN, θ is greater than about 0° and less than about 180°. For at least a first of the θN, θN is greater than about 0° and less than about 85°, and for at least a second of the θN, θN is greater than about 95° and less than about 180°.
Abstract:
Devices, components and fabrication methods are provided for improving the efficiency of OLED displays. An outcoupling component such as a microlens array (MLA) is attached to an OLED, with a relatively small distance between the MLA and the OLED. Cross-talk and back scattering are reduced by the use of colored lenses, focusing layers, and other methods.
Abstract:
OLED panels and techniques for fabricating OLED panels are provided. Multiple cuts may be made in an OLED panel to define a desired shape, as well as the location and shape of external electrical contacts. The panel may be encapsulated before or after being cut to a desired shape, allowing for greater flexibility and efficiency during manufacture.
Abstract:
A method for protecting an electronic device comprising an organic device body. The method involves the use of a hybrid layer deposited by chemical vapor deposition. The hybrid layer comprises a mixture of a polymeric material and a non-polymeric material, wherein the weight ratio of polymeric to non-polymeric material is in the range of 95:5 to 5:95, and wherein the polymeric material and the non-polymeric material are created from the same source of precursor material. Also disclosed are techniques for impeding the lateral diffusion of environmental contaminants.
Abstract:
A flexible AMOLED display is disclosed including an OLED stack having an anode layer, a cathode layer and an organic light emitting layer between the anode layer and the cathode layer. A backplane includes a substrate, a plurality of bus lines, and a thin film transistor array. A permeation barrier layer is positioned between the OLED stack and the backplane, and a plurality of vias connect the OLED anode layer to the backplane thin film transistor array. In one embodiment, a neutral plane of the AMOLED display crosses the permeation barrier. In one embodiment, the thickness of at least a portion of the bus lines is greater than the thickness of the cathode layer. A method of increasing the flexibility of an AMOLED display is disclosed. A method of assembling a flexible AMOLED display under a processing temperature of less than 200 degrees Celsius is also disclosed.
Abstract:
Devices and components are provided that include a curved outcoupling component and an OLED, where the outcoupling component provides up to 100% outcoupling of light emitted by the OLED into air. The outcoupling component has an outer radius R and includes a material with a refractive index n. The OLED is in optical communication with the outcoupling component and disposed such that each emissive element of the OLED is within a distance r measured from the center of curvature of the surface at the outer radius R, such that R−r>(n−1)r.