Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed for managing cloud applications. An example apparatus includes a monitor to determine current states of virtual machines, a cloud manager to communicate with a hybrid cloud infrastructure, a healer to: compare the current states of the virtual machines to target states to determine a value of the difference, and in response to determining that the difference indicates that there are not enough healthy virtual machines to meet the target states, instructing the cloud manager to add virtual machines based on the value of the difference.
Abstract:
Methods and apparatus for rack deployments for virtual computing environments are disclosed. An example method includes retrieving, from a repository remote from a system integrator, a software image to be deployed on a processing unit installed in a server rack, in response to receiving a dynamic host configuration protocol request from a processing unit at a virtual imaging appliance, detecting the processing unit and transmitting a network address to the processing unit to be utilized by the processing unit, transmitting the software image from the virtual imaging appliance to the network address assigned to the processing unit, and transmitting a hardware management system software image from the virtual imaging appliance to a network switch installed in the server rack to cause a hardware management system to be installed in the server rack.
Abstract:
Methods and apparatus to manage workload domains in virtual server racks are disclosed. An example apparatus includes a policy enforcer to evaluate whether capacities of the plurality of workload domains comply with policy capacity levels of respective user-defined policies for the plurality of workload domains, and a resource manager to, when a first workload domain has a first quantity of resources that exceeds a first policy capacity level of a first user-defined policy, identify a second workload domain requesting a second quantity of resources, when the second quantity of resources is equal to the first quantity of resources, allocate the first quantity of resources from the first workload domain to the second workload domain to satisfy the first policy capacity level, when the second quantity of resources is less than the first quantity of resources, allocate the second quantity of resources from the first workload domain to the second workload domain, and de-allocate remaining resources from the first workload domain to a shared resource pool to satisfy the first policy capacity level.
Abstract:
Methods and apparatus to provision a workload in a virtual server rack deployment are disclosed. An example method includes determining, via a first resource manager executing on a processor, parameters of a request for allocating resources of a virtual server rack for performing a workload, determining logical computing resources to be utilized for performing the workload based on the parameters, determining first physical computing resources installed in a first physical rack and second physical computing resources installed in a second physical rack included in the virtual server rack to perform the determined logical computing resources, and instructing a first centralized manager of virtual hosts to provision the first physical computing resources into the logical computing resources to allocate the logical computing resources for performing the workload.
Abstract:
Methods and apparatus to transfer physical hardware resources between virtual rack domains in a virtualized server rack are disclosed. An example method includes determining, using a processor, a subset of candidate hosts that includes a host capacity that meets a first threshold, the candidate hosts belonging to a first virtual rack domain; determining, using the processor, whether the first virtual rack domain will meet an operating requirement of the first virtual rack domain if the subset of the candidate hosts is removed from the first virtual rack domain; and when the first virtual rack domain will meet the operating requirement if the subset of the candidate hosts is removed from the first virtual rack domain, transferring the subset of the candidate hosts from the first virtual rack domain to a second virtual rack domain.
Abstract:
Methods, apparatus, systems, and articles of manufacture to improve packet flow among virtualized servers are disclosed. An example apparatus includes memory, and hardware to execute instructions to generate a load balance list identifying first ones of virtualized network resources having respective values of a utilization status parameter that satisfy a first threshold, in response to at least a number of the first virtualized network resources not satisfying a load balance list threshold, update the load balance list to additionally identify second ones of the virtualized network resources, the second ones of the virtualized network resources having respective values of the utilization status parameter that satisfy a second threshold, the first threshold different from the second threshold, and adjust a policy of a physical hardware resource corresponding to one or more of the virtualized network resources based on the load balance list.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed. An example apparatus includes a requirement translator to map a requirement to a hardware resource to execute an application in a workload domain, a cost calculator to calculate a cost for the hardware resource based on a demand for the hardware resource, an option generator to determine whether the cost exceeds a cost budget, and a resource allocator to add the hardware resource to the workload domain when the cost does not exceed the cost budget.
Abstract:
Methods, apparatus, systems, and articles of manufacture are disclosed. An example apparatus includes a packet analyzer to determine that a first virtualized server is preparing to migrate to a second virtualized server based on a data packet, a packet flow path generator to identify a set of network switches between the first virtualized server and the second virtualized server when the first virtualized server is in a different rackmount server than the second virtualized server, and a policy adjustor to adjust a policy of one or more network switches in the set to prioritize a packet flow corresponding to the migration.
Abstract:
A disclosed example apparatus to manage port allocations for network load balancing includes a telematics network information collector to collect bandwidth utilizations corresponding to physical links of network paths between a source and a destination, the network paths including at least one of a link aggregation group hop or an equal cost multi-path hop; a cost calculator to determine network path costs corresponding to unused protocol ports of a physical server host based on the bandwidth utilizations; a comparator to compare the network path costs; and a port allocator to, based on the comparison, allocate one of the unused protocol ports to an application.
Abstract:
An example apparatus to manage network resources includes a load balancing detector to determine to reassign first and second network fabrics; and a network fabric configurator to, in response to the detecting to reassign the first and second network fabrics, configuring a virtual network distributed switch to: assign the first network fabric to ones of the first applications previously assigned to the second network fabric; and assign the second network fabric to the second application.