Abstract:
A multi-access edge computing device may receive historical content data associated with a content application of a user equipment and may process the historical content data, with a machine learning model, to identify content to cache for the user equipment. The multi-access edge computing device may provide, to a content provider device, a request for the content to cache and may receive, from the content provider device, the content to cache based on the request for the content to cache. The multi-access edge computing device may process the content to cache, with a document object model and a browser object model, to generate intermediary content that corresponds to the content to cache. The multi-access edge computing device may store the intermediary content in a data structure associated with the multi-access edge computing device.
Abstract:
A device may receive information associated with a network resource request. The network resource request may be a request, by a user device, for access to a network resource associated with a network. The device may determine a subscriber class associated with the user device based on receiving the information associated with the network resource request. The device may determine a service type associated with the network resource request based on receiving the information associated with the network resource request. The device may determine an allocation and retention priority (ARP) level based on the determined subscriber class and the determined service type. The device may assign the ARP level to the network resource.
Abstract:
A base station may receive a resource request, from a device, that includes a request to access a radio resource. The base station may determine a device class to which the device belongs. The base station may determine an amount of radio resources permitted to be allocated to devices belonging to the device class, may determine an amount of radio resources being utilized by devices belonging to the device class, and may compare the amounts. The base station may determine whether radio resources are available to be allocated to the device based on comparing the amounts, and may process the resource request based on the determination. The base station may grant the resource request when radio resources are available to be allocated to the device, and may deny or postpone the resource request when radio resources are not available to be allocated to the device.
Abstract:
A device may proactively mitigate network congestion and reduce network load on a network device. In some implementations, the device may monitor load information associated with a base station in communication with a user device via a wireless cellular network; determine, based on the load information, that load on the base station should be reduced; determine, in response to the determination that the load on the base station should be reduced, and based on a type of traffic being transmitted to the user device via the base station, whether traffic for the user device can be offloaded to an access point within communications range of the user device; and cause, based on determining that the traffic for the user device can be offloaded to the access point, the user device to communicate via the access point and discontinue transmitting the traffic via the base station.
Abstract:
A system may be configured to receive analytics information regarding a cell of a wireless telecommunications network. The cell may be associated with multiple carriers, which may each be associated with, for example, a particular radio access technology (“RAT”), frequency band, or frequency sub-band. The system may dynamically rank the carriers based on measures of load associated with the carriers (as indicated by the analytics information), and may generate system information blocks (“SIBs”) that include the dynamic rankings The SIBs may be provided to user devices, which may select carriers, via which to connect to the cell, based on the dynamic rankings
Abstract:
A device may determine that a parameter of a base station, included in a network, is to be adjusted. The device may determine a first proposed adjustment based on a first SON algorithm associated with adjusting the parameter based on performance information of multiple base stations included in the network. The device may determine a second proposed adjustment based on a second SON algorithm associated with adjusting the parameter based on performance information of the base station. The device may determine a weight factor, associated with the base station, based on a relationship between the base station and one or more neighbor base stations included in the network. The device may determine a final adjustment based on the first proposed adjustment, the second proposed adjustment, and the weight factor. The device may cause the parameter of the base station to be adjusted based on the final adjustment.
Abstract:
Digital signal processors (DSPs) process the digital baseband signals associated with CPRI links between BBUs and RRHs. The DSPs may be implemented at the RRH nodes (e.g., at the link leading to the BBU node), at the BBU node (e.g., at the links leading to the RRH nodes), or at both. The DSPs may be used to increase performance of the RAN. For example, the DSPs may implement digital filters designed to enhance the performance of the RAN.
Abstract:
Service level agreement (SLA) based monitoring and configuration of a path for transmission of data is achieved by identifying an SLA associated with the data and determining transmission requirements associated with the SLA. A status of a network element in the path, such as data occupancy of a data queue included in the network element, may be determined and used to select one of a high bandwidth portion or a low bandwidth portion of the pathway. The occupancy of the queue may be used to estimate a transmission delay, and the estimated transmission delay is used to select between the high bandwidth portion and the low bandwidth portion. The data may be directed to the selected bandwidth portion by changing a quality of service (QoS) value or other attribute associated with the data.
Abstract:
A system may be configured to receive information regarding a quality of service (“QoS”) objective for a network. The network may include a group of nodes through which network traffic traverses. Each node, of the group of nodes, may implement one or more queues that indicate an order in which traffic is processed by the node. The system may further identify scheduling information associated with one or more nodes of the network. The queues implemented by the one or more nodes may be based on the identified scheduling information. The system may receive performance information from at least one of the nodes, of the group of nodes; and may generate new scheduling information for at least one node, of the group of nodes, based on the information regarding the QoS objective, the scheduling information associated with the one or more nodes, and the performance information.
Abstract:
A network device receives utilization information, for an infrastructure network, that provides data for individual segments of the infrastructure network. Based on the data for the individual segments, the network device generates a costing matrix that includes prices for each segment of the individual segments. The network device identifies particular segments of the infrastructure network associated with an end-to-end path for a subscriber and generates pricing of different service levels for the end-to-end path. The pricing is based on the costing matrix and a particular time period. The network device provides, to the subscriber, a user interface that includes service plan options with the pricing of different service levels for the end-to-end path and receives, via the user interface, a selection of one of the service plan options. The network device sends instructions to provision the infrastructure network to support the selected service plan option.