Abstract:
A method for recycling exhaust gas from Fischer-Tropsch synthesis. The method includes: 1) introducing raw gas to a shift reactor to conduct a water-gas shift reaction, and collecting shift gas; 2) introducing the shift gas to a Fischer-Tropsch synthesis device to yield a hydrocarbon fuel and exhaust gas, returning part of the exhaust gas as recycle gas; 3) introducing another part of the exhaust gas to a methanation reactor, allowing a methanation reaction to happen between the part of the exhaust gas and water vapor; 4) introducing a mixed gas product from the methanation reaction to a methane reforming reactor; 5) transporting the hydrogen and carbon monoxide resulting from the methane reforming reaction to a gas separator, separating the hydrogen and obtaining a mixed gas including carbon dioxide; and 6) returning the mixed gas including carbon dioxide to the methane reforming reactor.
Abstract:
A method for converting carbon dioxide in flue gas into natural gas using dump energy. The method includes: 1) transforming and rectifying a voltage of dump energy generated from a renewable energy plant, introducing the voltage-transformed and rectified dump energy into an electrolyte solution to electrolyze water therein to yield H2 and O2; 2) purifying industrial flue gas to separate CO2 therein and purifying CO2; 3) transporting H2 generated and CO2 to a synthesis equipment, allowing a methanation reaction between H2 and CO2 to happen to yield a high-temperature mixed gas with main ingredients of CH4 and water vapor; 4) employing the high-temperature mixed gas to conduct indirect heat exchange with process water to yield superheated water vapor; 5) delivering the superheated water vapor to a turbine to generate electric energy, and returning the electric energy to step 1); and 6) condensing and drying the mixed gas.
Abstract:
A method for gasifying biomass using a gasifier, the gasifier including a furnace body and a fuel pretreatment system. The method includes 1) crushing and sieving a biomass fuel to yield particle size-qualified fuel particles, 2) exciting working gas to yield plasma, and spraying the plasma into the gasifier, 3) spraying the particle size-qualified fuel particles into the gasifier via nozzles, synchronously spraying an oxidizer via an oxygen/vapor inlet into the gasifier, and 4) monitoring the temperature and components of the syngas, regulating an oxygen flow rate, a vapor flow rate, and microwave power to maintain the process parameters within a preset range and to control a temperature of the syngas to be between 900 and 1200° C., collecting the syngas from the syngas outlet at the top of the furnace body, and discharging liquid slag from the slag outlet.
Abstract:
A catalyst for methanation of carbon dioxide. The catalyst is formed by mixing ash from a biomass power plant with a nickel compound and calcining the resulting mixture. The catalyst formed by calcination includes between 2 and 20 wt. % of nickel.
Abstract:
A method of power generation, including: igniting a biomass boiler; starting a solar concentrating collector; measuring water temperature t3 at water outlet main of the solar concentrating collector; opening a second control valve arranged between the water outlet main and the boiler drum when t3 is greater or equal to 95° C.; closing the second control valve and the third control valve to prevent water in the solar collector tube from running and to maintain the water in a heat preserving and inactive state if the water temperature t3 decreases and t3 is less than 95° C.; turning the turbonator unit into a thermal power generation mode; opening a first control valve arranged between the water outlet main and a water supply tank if the water temperature t3 continues decreasing and when t3 is between 5 and 9° C.; and turning the turbonator unit into a biomass boiler power generation mode.
Abstract:
A method for preparing surface-modified nano silicon dioxide from rice hulls. The method includes: 1) pretreating rice hulls using a treating gas containing CO2 to remove metal ions, impurities, and dusts, and desiccating and grinding the rice hulls; 2) submerging the rice hulls into a dilute solution of phosphoric acid, boric acid, hydrochloric acid, formic acid, acetic acid, propionic acid, butyric acid, or a strong-acid-weak-base salt for between 4 and 8 hrs, controlling the immersion temperature not to exceed 10° C., leaching a resulting mixture, removing a filtrate, and desiccating the rice hulls; and 3) calcining the rice hulls in the absence of oxygen at a temperature of between 300 and 450° C.