Abstract:
A catalyst including between 50.0 and 99.8 percent by weight of iron, between 0 and 5.0 percent by weight of a first additive, between 0 and 10 percent by weight of a second additive, and a carrier. The first additive is ruthenium, platinum, copper, cobalt, zinc, or a metal oxide thereof. The second additive is lanthanum oxide, cerium oxide, magnesium oxide, aluminum oxide, silicon dioxide, potassium oxide, manganese oxide, or zirconium oxide.
Abstract:
A method for Fischer-Tropsch synthesis, the method including: 1) gasifying a raw material to obtain a crude syngas including H2, CO and CO2; 2) electrolyzing a saturated NaCl solution using a chloralkali process to obtain a NaOH solution, H2 and H2; 3) removing the CO2 in the crude syngas using the NaOH solution obtained in 2) to obtain a pure syngas; and 4) insufflating the H2 obtained in 2) to the pure syngas to adjust a mole ratio of CO/H2 in the pure syngas, and then introducing the pure syngas for Fischer-Tropsch synthesis reaction. A device for Fischer-Tropsch synthesis includes a gasification device, an electrolyzer, a first gas washing device, and a Fischer-Tropsch synthesis reactor.
Abstract:
A method for preparing high-temperature, active particle-containing steam. The method includes: 1) preparing steam; selecting one or several non-oxidizing gases as a working gas; ionizing the working gas into a plasma working medium by using a plasma generator; and 2) injecting the plasma working medium into a high-temperature steam generator to form high-temperature ionized environment while introducing the steam into the high-temperature steam generator for allowing the steam to contact with the plasma working medium so that the steam is heated and activated to form active particle-containing steam. A device for preparing the high-temperature, active particle-containing steam is also provided.
Abstract:
A catalyst for methanation of carbon dioxide, a method of preparing the catalyst, and a method of hydrogenating carbon dioxide in the presence of the catalyst in a fixed bed reactor are disclosed. The catalyst is formed by mixing ash from a biomass power plant with a nickel compound and calcining the resulting mixture. The catalyst formed by calcination includes between 2 and 20 wt. % of nickel supported on ash from combusting biomass.
Abstract:
A method for preparing a liquid hydrocarbon from syngas. The method includes: 1) mixing crude syngas from a biomass gasifier and a hydrogen-rich gas to yield a mixed gas; 2) dehydrating and decarbonizing the mixed gas for removal of moisture, carbon dioxide, and impurities, to yield a fine syngas; 3) introducing the fine syngas to a Fischer-Tropsch synthesis device in the presence of a catalyst, controlling a reaction temperature of the Fischer-Tropsch synthesis at between 150 and 300° C. and a reaction pressure of between 2 and 4 MPa (A), to yield a liquid hydrocarbon and water which is discharged out of the Fischer-Tropsch synthesis device; and 4) returning 70-95 vol. % of exhaust gases from the Fischer-Tropsch synthesis device to step 3) to mix with the fine syngas, and introducing the resulting mixed gas to the Fischer-Tropsch synthesis device.
Abstract:
A power generation system, including: a solar energy concentration system, a biomass gasification device, a gas-powered generator, a steam turbine, a steam-powered generator. The solar energy concentration system is connected to a solar energy heat exchange system. The biomass gasification device is connected to the gas-powered generator. The gas outlet of the gas turbine is connected to the gas exhaust heat system. The second steam outlet of the gas exhaust heat system is connected to the second and the third cylinders of the steam turbine. The first steam outlet of the gas exhaust heat system and the steam outlet of the solar energy heat exchange system are connected to a steam mixing regulating system. The mixed steam outlet of the steam mixing regulating system is connected to the first cylinder of the steam turbine.
Abstract:
A method for improving Fischer-Tropsch synthesis and recycling exhaust gases therefrom. The method includes: 1) transforming raw gas for Fischer-Tropsch synthesis using a water-gas shift reaction, transporting the transformed raw gas to a Fischer-Tropsch synthesis device for Fischer-Tropsch synthesis in the presence of a Fe-based or Co-based catalyst; 2) introducing exhaust gases from the Fischer-Tropsch synthesis device to a first pressure-swing adsorber for hydrogen recovery; 3) introducing the exhaust gases from 2) to a second pressure-swing adsorber for methane recovery; 4) returning part of the hydrogen obtained from 2) to 1) to mix with the raw gas, and transforming a resulting mixed gas to adjust a hydrogen/carbon ratio of the raw gas; and 5) introducing the methane in 3) to a methane reforming device to reform the methane whereby yielding syngas having relatively high hydrogen/carbon ratio, and transporting the syngas to 1) to mix with the raw gas.
Abstract:
A high capacity polymer hydrogen storage material, including a linear high molecular polymer as a main chain. At least one side chain or a terminal group of the linear high molecular polymer is first aminated using a polyamine compound and then reacts with a borohydride to yield an ammonia borane derivative grafted to the side chain or the terminal group of the linear high molecular polymer.
Abstract:
A method for Fischer-Tropsch synthesis, the method including: 1) gasifying a raw material to obtain a crude syngas including H2, CO and CO2; 2) electrolyzing a saturated NaCl solution using a chloralkali process to obtain a NaOH solution, Cl2 and H2; 3) removing the CO2 in the crude syngas using the NaOH solution obtained in 2) to obtain a pure syngas; and 4) insufflating the H2 obtained in 2) to the pure syngas to adjust a mole ratio of CO/H2 in the pure syngas, and then introducing the pure syngas for Fischer-Tropsch synthesis reaction. A device for Fischer-Tropsch synthesis includes a gasification device, an electrolyzer, a first gas washing device, and a Fischer-Tropsch synthesis reactor.
Abstract:
A monolithic catalyst, including cobalt, a metal matrix, a molecular sieve membrane, and an additive. The metal matrix is silver, gold, copper, platinum, titanium, molybdenum, iron, tin, or an alloy thereof. The molecular sieve membrane is mesoporous silica SBA-16 which is disposed on the surface of the metal matrix and is a carrier of the active component and the additive. The thickness of the carrier is between 26 and 67 μm. The additive is lanthanum, zirconium, cerium, rhodium, platinum, rhenium, ruthenium, titanium, magnesium, calcium, strontium, or a mixture thereof. A method for preparing the monolithic catalyst is also provided.