摘要:
A high density trench-gated MOSFET array and method are disclosed. It comprises semiconductor substrate partitioned into MOSFET array area and gate pickup area; epitaxial region, body region and source region; numerous precisely spaced active nitride-capped trench gate stacks (ANCTGS) embedded till the epitaxial region. Each ANCTGS comprises a stack of polysilicon trench gate with gate oxide shell and silicon nitride cap covering top of polysilicon trench gate and laterally registered to gate oxide shell. The ANCTGS forms, together with the source, body, epitaxial region, a MOSFET device in the MOSFET array area. Over MOSFET array area and gate pickup area, a patterned dielectric region atop the MOSFET array and a patterned metal layer atop the patterned dielectric region. Thus, the patterned metal layer forms, with the MOSFET array and the gate pickup area, self-aligned source and body contacts through the inter-ANCTGS separations.
摘要:
A method for manufacturing a semiconductor power device on a semiconductor substrate supporting a drift region composed of an epitaxial layer by growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers then carrying out a device manufacturing process on a top side of the epitaxial layer with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
摘要:
A semiconductor power device may include a lightly doped layer formed on a heavily doped layer. One or more devices are formed in the lightly doped layer. Each device may include a body region, a source region, and one or more gate electrodes formed in corresponding trenches in the lightly doped region. Each of the trenches has a depth in a first dimension, a width in a second dimension and a length in a third dimension. The body region is of opposite conductivity type to the lightly and heavily doped layers. The source region is formed proximate the upper surface. One or more deep contacts are formed at one or more locations along the third dimension proximate one or more of the trenches. The contacts extend in the first direction from the upper surface into the lightly doped layer and are in electrical contact with the source region.
摘要:
This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
摘要:
A method is disclosed for making a substantially charge balanced multi-nano shell drift region (MNSDR) for superjunction semiconductor devices atop a base substrate. The MNSDR has numerous concentric nano shell members NSM1, NSM2, . . . , NSMM (M>1) of alternating, substantially charge balanced first conductivity type and second conductivity type and with height NSHT. First, a bulk drift layer (BDL) is formed atop the base substrate. A substantially vertical cavity of pre-determined shape and size and with depth NSHT is then created into the top surface of BDL. The shell members NSM1, NSM2, . . . , NSMM are successively formed inside the vertical cavity, initially upon its vertical walls then moving toward its center, so as to successively fill the vertical cavity till a residual space remains therein. A semi-insulating or insulating fill-up nano plate is then formed inside the residual space to fill it up.
摘要:
Trench gate MOSFET devices may be formed using a single mask to define gate trenches and body contact trenches. A hard mask is formed on a surface of a semiconductor substrate. A trench mask is applied on the hard mask to predefine a body contact trench and a gate trench. These predefined trenches are simultaneously etched into the substrate to a first predetermined depth. A gate trench mask is next applied on top of the hard mask. The gate trench mask covers the body contact trenches and has openings at the gate trenches that are wider than those trenches. The gate trench, but not the body contact trench, is etched to a second predetermined depth. Conductive material of a first kind may fill the gate trench to form a gate. Conductive material of a second kind may fill the body contact trench to form a body contact.
摘要:
This invention discloses a method for manufacturing a semiconductor power device on a semiconductor substrate supporting a . drift region composed of an epitaxial layer. The method includes a first step of growing a first epitaxial layer followed by forming a first hard mask layer on top of the epitaxial layer; a second step of applying a first implant mask to open a plurality of implant windows and applying a second implant mask for blocking some of the implant windows to implant a plurality of dopant regions of alternating conductivity types adjacent to each other in the first epitaxial layer; and a third step of repeating the first step and the second step by applying the same first and second implant masks to form a plurality of epitaxial layers, each of which is implanted with the dopant regions of the alternating conductivity types. Then the manufacturing processes proceed by carrying out a device manufacturing process on a top side of the epitaxial layer on top of the dopant regions of the alternating conductivity types with a diffusion process to merge the dopant regions of the alternating conductivity types as doped columns in the epitaxial layers.
摘要:
A high density trench-gated MOSFET array and method are disclosed. It comprises semiconductor substrate partitioned into MOSFET array area and gate pickup area; epitaxial region, body region and source region; numerous precisely spaced active nitride-capped trench gate stacks (ANCTGS) embedded till the epitaxial region. Each ANCTGS comprises a stack of polysilicon trench gate with gate oxide shell and silicon nitride cap covering top of polysilicon trench gate and laterally registered to gate oxide shell. The ANCTGS forms, together with the source, body, epitaxial region, a MOSFET device in the MOSFET array area. Over MOSFET array area and gate pickup area, a patterned dielectric region atop the MOSFET array and a patterned metal layer atop the patterned dielectric region. Thus, the patterned metal layer forms, with the MOSFET array and the gate pickup area, self-aligned source and body contacts through the inter-ANCTGS separations.
摘要:
A semiconductor substrate comprises epitaxial region, body region and source region; an array of interdigitated active nitride-capped trench gate stacks (ANCTGS) and self-guided contact enhancement plugs (SGCEP) disposed above the semiconductor substrate and partially embedded into the source region, the body region and the epitaxial region forming the trench-gated MOSFET array. Each ANCTGS comprises a stack of a polysilicon trench gate embedded in a gate oxide shell and a silicon nitride spacer cap covering the top of the polysilicon trench gate; each SGCEP comprises a lower intimate contact enhancement section (ICES) in accurate registration to its neighboring ANCTGS; an upper distal contact enhancement section (DCES) having a lateral mis-registration (LTMSRG) to the neighboring ANCTGS; and an intervening tapered transitional section (TTS) bridging the ICES and the DCES; a patterned metal layer atop the patterned dielectric region atop the MOSFET array forms self-guided source and body contacts through the SGCEP.
摘要:
This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.