Metal gate engineering for surface P-channel devices
    21.
    发明申请
    Metal gate engineering for surface P-channel devices 有权
    金属门工程用于表面P沟道器件

    公开(公告)号:US20060163663A1

    公开(公告)日:2006-07-27

    申请号:US11371657

    申请日:2006-03-08

    Applicant: Yongjun Hu

    Inventor: Yongjun Hu

    Abstract: A semiconductor device, such as a CMOS device, having gates with a high work function in PMOS regions and low work functions in NMOS regions and a method of producing the same. Using nitrogen implantation or plasma annealing, a low work function W (or CoSix)/TaSixNy/GOx/Si gate stack is formed in the NMOS regions while a high work function W (or CoSix)/Ta5Si3/GOx/Si gate stack is formed in the PMOS regions. The improved process also eliminates the need for a nitrided GOx which is known to degrade gm (transconductance) performance. The materials of the semiconductor devices exhibit improved adhesion characteristics to adjacent materials and low internal stress.

    Abstract translation: 一种半导体器件,例如CMOS器件,其在PMOS区域中具有高功函数的栅极和NMOS区域中的低功函数及其制造方法。 使用氮注入或等离子体退火,低功函数W(或Co x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x Si x 形成在NMOS区域中,同时形成高功函数W(或CoSi x Sb)/ Ta 5 Si 3 / GO x / Si栅叠层 在PMOS区域。 改进的方法也不需要已知降解g(跨导)性能的氮化的GOx。 半导体器件的材料表现出对相邻材料的改善的粘附特性和低内应力。

    Method and structure for reducing resistance of a semiconductor device feature
    22.
    发明申请
    Method and structure for reducing resistance of a semiconductor device feature 有权
    降低半导体器件特性的电阻的方法和结构

    公开(公告)号:US20060006481A1

    公开(公告)日:2006-01-12

    申请号:US11225450

    申请日:2005-09-13

    Applicant: Yongjun Hu

    Inventor: Yongjun Hu

    Abstract: A method used to form a semiconductor device comprises forming a polysilicon layer, forming a conductive barrier layer on the polysilicon layer, then forming a conductive nitride layer on the conductive barrier layer. Next, a conductive amorphous layer is formed on the conductive barrier layer, and an elemental metal layer is formed on the conductive amorphous layer. Without the conductive amorphous layer the elemental metal layer would form on the conductive nitride layer as a small grained, high resistance layer, while it forms on the conductive amorphous layer as a large grained, low resistance layer. A semiconductor device which may be formed using this method is also described.

    Abstract translation: 用于形成半导体器件的方法包括形成多晶硅层,在多晶硅层上形成导电阻挡层,然后在导电阻挡层上形成导电氮化物层。 接着,在导电性阻挡层上形成导电非晶层,在导电性非晶层上形成元素金属层。 在没有导电非晶层的情况下,元素金属层将作为小颗粒的高电阻层在导电氮化物层上形成,而在导电非晶层上形成作为大晶粒的低电阻层。 还描述了可以使用该方法形成的半导体器件。

    Methods of forming refractory metal silicide components and methods of restricting silicon surface migration of a silicon structure
    23.
    发明授权
    Methods of forming refractory metal silicide components and methods of restricting silicon surface migration of a silicon structure 失效
    形成难熔金属硅化物组分的方法和限制硅结构硅表面迁移的方法

    公开(公告)号:US06953749B2

    公开(公告)日:2005-10-11

    申请号:US09798404

    申请日:2001-03-02

    CPC classification number: H01L21/76889 H01L21/76895

    Abstract: Methods of forming refractory metal suicide components are described. In accordance with one implementation, a refractory metal layer is formed over a substrate. A silicon-containing structure is formed over the refractory metal layer and a silicon diffusion restricting layer is formed over at least some of the silicon-containing structure. The substrate is subsequently annealed at a temperature which is sufficient to cause a reaction between at least some of the refractory metal layer and at least some of the silicon-containing structure to at least partially form a refractory metal silicide component. In accordance with one aspect of the invention, a silicon diffusion restricting layer is formed over or within the refractory metal layer in a step which is common with the forming of the silicon diffusion restricting layer over the silicon-containing structure. In a preferred implementation, the silicon diffusion restricting layers are formed by exposing the substrate to nitridizing conditions which are sufficient to form a nitride-containing layer over the silicon-containing structure, and a refractory metal nitride compound within the refractory metal layer. A preferred refractory metal is titanium.

    Abstract translation: 描述形成难熔金属硅化物组分的方法。 根据一个实施方案,在衬底上形成难熔金属层。 在难熔金属层之上形成含硅结构,并且在至少一些含硅结构上形成硅扩散限制层。 随后在足以使至少一些难熔金属层与至少一些含硅结构之间的反应至少部分地形成难熔金属硅化物组分的温度下进行退火。 根据本发明的一个方面,在与含硅结构上形成硅扩散限制层相同的步骤中,在难熔金属层之上或之内形成硅扩散限制层。 在优选的实施方案中,硅扩散限制层是通过将衬底暴露于足以在含硅结构上形成含氮化物层的氮化条件和难熔金属层内的难熔金属氮化物化合物而形成的。 优选的难熔金属是钛。

    Word lines for memory cells
    24.
    发明申请
    Word lines for memory cells 有权
    记忆单元的字线

    公开(公告)号:US20050161721A1

    公开(公告)日:2005-07-28

    申请号:US11072159

    申请日:2005-03-04

    Abstract: Various embodiments of the invention described herein reduce contact resistance to a silicon-containing material using a first refractory metal material overlying the silicon-containing material and a second refractory metal material overlying the first refractory metal material. Each refractory metal material is a conductive material containing a refractory metal and an impurity. The first refractory metal material is a metal-rich material, containing a level of its impurity at less than a stoichiometric level. The second refractory metal material has a lower affinity for the impurities than does the first refractory metal material. The second refractory metal material can thus serve as an impurity donor during an anneal or other exposure to heat. This net migration of the impurities to the first refractory metal material limits growth of a metal silicide interface between the first refractory metal material and the underlying silicon-containing material, thereby providing ohmic contact with attendant thermal tolerance.

    Abstract translation: 使用覆盖含硅材料的第一耐火金属材料和覆盖第一难熔金属材料的第二难熔金属材料来降低与含硅材料的接触电阻。 每种难熔金属材料是含有难熔金属和杂质的导电材料。 第一难熔金属材料是富含金属的材料,其含量低于化学计量水平的杂质。 与第一难熔金属材料相比,第二难熔金属材料对杂质的亲和力较低。 因此,第二难熔金属材料可以在退火或其它暴露于热的过程中用作杂质供体。 这种杂质向第一难熔金属材料的净迁移限制了第一难熔金属材料和下面的含硅材料之间的金属硅化物界面的生长,从而提供与耐热性的欧姆接触。

    Conductor layer nitridation
    25.
    发明授权
    Conductor layer nitridation 有权
    导体层氮化

    公开(公告)号:US06525384B2

    公开(公告)日:2003-02-25

    申请号:US09131993

    申请日:1998-08-11

    Abstract: Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.

    Abstract translation: 用于形成字线堆叠的方法和装置包括形成耦合在底部硅层和导体层之间的薄氮化物层。 在另一个实施例中,扩散阻挡层耦合在薄氮化物层和底部硅层之间。 通过在含氮环境中退火氧化硅膜来形成薄氮化物层。

    Method for making a low resistivity electrode having a near noble metal
    26.
    发明授权
    Method for making a low resistivity electrode having a near noble metal 有权
    制造具有接近贵金属的低电阻率电极的方法

    公开(公告)号:US06417104B1

    公开(公告)日:2002-07-09

    申请号:US09450301

    申请日:1999-11-29

    Applicant: Yongjun Hu

    Inventor: Yongjun Hu

    Abstract: A method for forming conductive lines such as interconnects and DRAM gate stacks. A blanket stack is formed on a substrate including a conductive diffusion barrier, a near noble metal such as cobalt, followed by a silicon layer and a top insulator layer. The blanket stack is patterned with resist to define the conductive lines. The stack is dry etched down to the near noble metal layer. The resist is then removed and the stack is annealed to react the near noble metal and silicon to form a conductive compound having fine grain size. The unreacted noble metal is then wet etched, using the conductive diffusion barrier as a wet etch stop. A further dry etch is then performed down to the substrate, using the top insulator layer as a mask. In this manner, only one mask is required to form the conductive line.

    Abstract translation: 一种用于形成诸如互连和DRAM栅极叠层之类的导线的方法。 在包括导电扩散阻挡层,接近贵金属如钴的衬底上,随后是硅层和顶部绝缘体层的衬底上形成覆盖层叠层。 用抗蚀剂图案化叠层叠层以限定导电线。 将该堆叠干燥地蚀刻到接近的贵金属层。 然后去除抗蚀剂,并且将堆叠退火以使近贵金属和硅反应以形成具有细晶粒度的导电化合物。 然后使用导电扩散阻挡层作为湿蚀刻停止层,对未反应的贵金属进行湿蚀刻。 然后使用顶部绝缘体层作为掩模,进一步干燥蚀刻到衬底。 以这种方式,仅需要一个掩模来形成导线。

    Methods of forming refractory metal silicide components and methods of
restricting silicon surface migration of a silicon structure
    27.
    发明授权
    Methods of forming refractory metal silicide components and methods of restricting silicon surface migration of a silicon structure 失效
    形成难熔金属硅化物组分的方法和限制硅结构硅表面迁移的方法

    公开(公告)号:US6120915A

    公开(公告)日:2000-09-19

    申请号:US20591

    申请日:1998-02-04

    Abstract: Methods of forming refractory metal silicide components are described. In accordance with one implementation, a refractory metal layer is formed over a substrate. A silicon-containing structure is formed over the refractory metal layer and a silicon diffusion restricting layer is formed over at least some of the silicon-containing structure. The substrate is subsequently annealed at a temperature which is sufficient to cause a reaction between at least some of the refractory metal layer and at least some of the silicon-containing structure to at least partially form a refractory metal silicide component. In accordance with one aspect of the invention, a silicon diffusion restricting layer is formed over or within the refractory metal layer in a step which is common with the forming of the silicon diffusion restricting layer over the silicon-containing structure. In a preferred implementation, the silicon diffusion restricting layers are formed by exposing the substrate to nitridizing conditions which are sufficient to form a nitride-containing layer over the silicon-containing structure, and a refractory metal nitride compound within the refractory metal layer. A preferred refractory metal is titanium.

    Abstract translation: 描述形成难熔金属硅化物组分的方法。 根据一个实施方案,在衬底上形成难熔金属层。 在难熔金属层之上形成含硅结构,并且在至少一些含硅结构上形成硅扩散限制层。 随后在足以使至少一些难熔金属层与至少一些含硅结构之间的反应至少部分地形成难熔金属硅化物组分的温度下进行退火。 根据本发明的一个方面,在与含硅结构上形成硅扩散限制层相同的步骤中,在难熔金属层之上或之内形成硅扩散限制层。 在优选的实施方案中,硅扩散限制层是通过将衬底暴露于足以在含硅结构上形成含氮化物层的氮化条件和难熔金属层内的难熔金属氮化物化合物而形成的。 优选的难熔金属是钛。

    Process for manufacturing a large grain tungsten nitride film and
process for manufacturing a lightly nitrided titanium salicide
diffusion barrier with a large grain tungsten nitride cover layer
    29.
    发明授权
    Process for manufacturing a large grain tungsten nitride film and process for manufacturing a lightly nitrided titanium salicide diffusion barrier with a large grain tungsten nitride cover layer 失效
    用于制造大颗粒氮化钨膜的方法和用于制造具有大颗粒氮化钨覆盖层的轻度氮化的自对准硅化物扩散阻挡层的方法

    公开(公告)号:US5633200A

    公开(公告)日:1997-05-27

    申请号:US653428

    申请日:1996-05-24

    Applicant: Yongjun Hu

    Inventor: Yongjun Hu

    Abstract: Disclosed herein is a process for manufacturing a smooth, large grain tungsten nitride film. Under the process, tungsten nitride is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level wherein primarily tungsten is sputtered with only a light nucleation of tungsten nitride being evenly distributed in the tungsten. A separate grain growth step is subsequently conducted in an environment of nitrogen to grow a film of large grain tungsten nitride. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided titanium salicide diffusion barrier with a covering of tungsten nitride. The stack structure is formed in accordance with the tungsten nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.

    Abstract translation: 本文公开了一种用于制造光滑的大颗粒氮化钨膜的方法。 在该过程中,通过物理气相沉积在氮气环境中沉积氮化钨。 环境的氮含量在操作水平下选择,其中主要是钨溅射,只有氮化钨的轻成核均匀分布在钨中。 随后在氮气环境中进行单独的晶粒生长步骤,以生长大颗粒氮化钨的膜。 还公开了一种适合于MOS存储器电路的堆叠结构,其结合了具有氮化钨覆盖层的轻微氮化的自对准硅化物扩散阻挡层。 堆叠结构根据氮化钨膜制造工艺形成,并且表现出高热稳定性,低电阻率,远距离聚集阻塞和高表面光滑度。

    Composite permanent magnetic material and preparation method thereof
    30.
    发明授权
    Composite permanent magnetic material and preparation method thereof 有权
    复合永磁材料及其制备方法

    公开(公告)号:US09048016B2

    公开(公告)日:2015-06-02

    申请号:US13549421

    申请日:2012-07-14

    Abstract: The invention relates to the field of permanent magnet materials, and discloses a composite permanent magnet material. The material is formed by splicing at least one permanent magnet material, with binding agent in between. The novel composite permanent magnet material that is formed by splicing different magnets greatly enriches the existing permanent magnet system and can completely replace the expensive rare metallic magnetic material. The composite permanent magnet material disclosed by the invention has high performances. The magnetic performance of the magnet can be regulated and controlled by adjusting the type and length of the magnets. In particular, the magnetic blank between the bonded NdFeB and the sintered NdFeB provides the designer and user of permanent magnetic motors with broader and flexible in material selection space and cost selection space.

    Abstract translation: 本发明涉及永磁材料领域,并公开了复合永磁材料。 该材料通过将至少一种永久磁铁材料与其中的粘结剂拼接而形成。 通过拼接不同磁体形成的新型复合永磁材料大大丰富了现有的永磁体系统,可以完全代替昂贵的稀有金属磁性材料。 本发明公开的复合永磁材料具有较高的性能。 通过调整磁体的种类和长度可以调节和控制磁体的磁性能。 特别地,结合的NdFeB和烧结NdFeB之间的磁性空白为永磁电动机的设计者和用户提供了更广泛灵活的材料选择空间和成本选择空间。

Patent Agency Ranking