Abstract:
The invention includes methods of utilizing compositions containing iridium and tantalum in semiconductor constructions, and includes semiconductor constructions comprising compositions containing iridium and tantalum. The compositions containing iridium and tantalum can be utilized as barrier materials, and in some aspects can be utilized as barriers to copper diffusion.
Abstract:
The invention includes methods of utilizing compositions containing iridium and tantalum in semiconductor constructions, and includes semiconductor constructions comprising compositions containing iridium and tantalum. The compositions containing iridium and tantalum can be utilized as barrier materials, and in some aspects can be utilized as barriers to copper diffusion.
Abstract:
Some embodiments of the invention include structures and methods for a field emitter display device with a coating and an implantation layer underneath a surface of the emitter. Other embodiments are described and claimed.
Abstract:
Structures and methods to ease electron emission and limit outgassing so as to inhibit degradation to the electron beam of a field emitter device are described. In one method to ease such electron emission, a layer of low relative dielectric constant material is formed under the surface of the field emitter tip. Another method is to coat the field emitter tip with a low relative dielectric constant substance or compound to form a layer and then cover that layer with a thin layer of the material of the field emitter tip.
Abstract:
Methods and apparatus for forming word line stacks comprise forming a thin nitride layer coupled between a bottom silicon layer and a conductor layer. In a further embodiment, a diffusion barrier layer is coupled between the thin nitride layer and the bottom silicon layer. The thin nitride layer is formed by annealing a silicon oxide film in a nitrogen-containing ambient.
Abstract:
Antireflective structures according to the present invention comprise a metal silicon nitride composition in a layer that is superposed upon a layer to be patterned that would other wise cause destructive reflectivity during photoresist patterning. The antireflective structure has the ability to absorb light used during photoresist patterning. The antireflective structure also has the ability to scatter unabsorbed light into patterns and intensities that are ineffective to photoresist material exposed to the patterns and intensities. One preferred material for the antireflective layer includes metal silicon nitride ternary compounds of the general formula MxSiyNz, where M is at least one transition metal, x is less than y and z is greater than about 0 and less than about 5y.
Abstract:
A process is disclosed for manufacturing a film that is a smooth and has large nitride grains of a diffusion barrier material selected from a group consisting of tungsten alloys of Group III and Group IV early transition metals and molybdenum alloys of Group III and Group IV early transition metals. The diffusion barrier material is preferably selected from a group consisting of ScyMz, ZryMz, ZrvScyMz, ZrvNbYMz, ZruScvNbyMz, NbyMz, NbvScyMz, TiyMz, TivScyMz, TivNbyMz, and TivZryMz, where M is one of tungsten and molybdenum. Under the process, a nitride of the diffusion barrier material is deposited by physical vapor deposition in an environment of nitrogen. The nitrogen content of the environment is selected at an operating level wherein primarily the diffusion barrier material is sputtered with between about 4×108 to about 4×1015 nitride nuclei of the diffusion barrier material per cm2 of the diffusion barrier material, where the nitride nucleation of diffusion barrier material is evenly distributed. A grain growth step is then conducted in a nitrogen environment to grow a film of large nitride grain of the diffusion barrier material. Also disclosed is a stack structure suitable for MOS memory circuits incorporating a lightly nitrided refractory metal salicide diffusion barrier with a covering of a nitride of a diffusion barrier material. The stack structure is formed in accordance with the diffusion barrier material nitride film manufacturing process and exhibits high thermal stability, low resistivity, long range agglomeration blocking, and high surface smoothness.
Abstract:
Methods of forming refractory metal silicide components are described. In accordance with one implementation, a refractory metal layer is formed over a substrate. A silicon-containing structure is formed over the refractory metal layer and a silicon diffusion restricting layer is formed over at least some of the silicon-containing structure. The substrate is subsequently annealed at a temperature which is sufficient to cause a reaction between at least some of the refractory metal layer and at least some of the silicon-containing structure to at least partially form a refractory metal silicide component. In accordance with one aspect of the invention, a silicon diffusion restricting layer is formed over or within the refractory metal layer in a step which is common with the forming of the silicon diffusion restricting layer over the silicon-containing structure. In a preferred implementation, the silicon diffusion restricting layers are formed by exposing the substrate to nitridizing conditions which are sufficient to form a nitride-containing layer over the silicon-containing structure, and a refractory metal nitride compound within the refractory metal layer. A preferred refractory metal is titanium.
Abstract:
Methods and apparatus for forming a conductor layer utilize an implanted matrix to form C54-titanium silicide. Word line stacks formed by the methods of the invention are used in sub-0.25 micron line width applications, interconnects, and silicided source/drain regions, among other applications, and have a lower resistivity and improved thermal stability.
Abstract:
Methods of forming refractory metal silicide components are described. In accordance with one implementation, a refractory metal layer is formed over a substrate. A silicon-containing structure is formed over the refractory metal layer and a silicon diffusion restricting layer is formed over at least some of the silicon-containing structure. The substrate is subsequently annealed at a temperature which is sufficient to cause a reaction between at least some of the refractory metal layer and at least some of the silicon-containing structure to at least partially form a refractory metal silicide component. In accordance with one aspect of the invention, a silicon diffusion restricting layer is formed over or within the refractory metal layer in a step which is common with the forming of the silicon diffusion restricting layer over the silicon-containing structure. In a preferred implementation, the silicon diffusion restricting layers are formed by exposing the substrate to nitridizing conditions which are sufficient to form a nitride-containing layer over the silicon-containing structure, and a refractory metal nitride compound within the refractory metal layer. A preferred refractory metal is titanium.