摘要:
A power MOSFET includes an n-type drift layer and a p-type base layer formed in a layered manner on the n-type drift layer. Trench gates are formed to penetrate the p-type base layer to reach the n-type drift layer. On the p-type base layer, n+-type source regions and p+-type regions are formed. These n+-type source regions and p+-type regions are arranged alternately along a longitudinal direction of the trench gates. The n+-type source regions and the p+-type regions are arranged with a slant with respect to the longitudinal direction of the trench gates.
摘要:
A semiconductor device includes a first conductivity type layer and a second conductivity type layer, which are alternately and repeatedly positioned, adjacent to each other, in a column-like fashion on a first conductivity type substrate. The balance of the net charge amount of the impurity between the first conductivity type layer formed under a second conductivity type base layer in the termination region of the semiconductor device and the second conductivity type layer adjacent to the first conductivity type layer is imbalanced in comparison to the balance of the net charge amount of the impurity between the first conductivity type layer in the device-forming region of the semiconductor device and the second conductivity type layer adjacent to the first conductivity type layer.
摘要:
This semiconductor device an epitaxial layer of a first conductivity type formed on a surface of the first semiconductor layer, and a base layer of a second conductivity type formed on a surface of the epitaxial layer. A diffusion layer of a first conductivity type is selectively formed in the base layer, and a trench penetrates the base layer to reach the epitaxial layer. A gate electrode is formed in the trench through the gate insulator film formed on the inner wall of the trench. A first buried diffusion layer of a second conductivity type is formed in the epitaxial layer deeper than the bottom of the gate electrode. A second buried diffusion layer connects the first buried diffusion layer and the base layer and has a resistance higher than that of the first buried diffusion layer.
摘要:
In a main circuit 11 of the plasma cutter power supply device 6, a plurality of DC power units 14-1, . . . 14-n of low capacity are connected in parallel on their DC output sides, and are connected to a plasma torch 20. Each power unit 14-1, . . . 14-n can operate asynchronously and independently from each other. The power supply control device 6 controls the number of power units to be operated, and the intensity of output electrical current at which each of them is to be operated, according to the cutting conditions (the nature of the material to be cut, its thickness, and the cutting speed) and according to the number of power units which can be operated. If some of the power units are faulty, the power supply control device 6 controls the cutting conditions which can be accepted, according to the number of normal power units.
摘要:
In a thermal cutting machine such as plasma cutting machine or a laser cutting machine, control of the moving speed of a cutting head (24) is improved so as to increase throughput of the cutting machine with increase in cost restricted. Products are cut out one by one from a plate member (14) while a cutting head (24) is moved relative to the plate member (14) on a table (12). In this process, when the cutting head (24) is fast-forwarded without performing cutting to a position at which cutting of each product starts, the speed of movement in the direction (Y-axis direction) along a short side of the table (12) is controlled at a speed higher than that of the movement in the direction (X-axis direction) along a long side of the table. The pattern of a sequence of cutting out the products from the plate member (14) is a meandering pattern in which reciprocation in the Y-axis direction dominates and the movement in the X-direction is one time one way. Exhaust chambers are arranged in the X-axis direction in the table (12), and the exhaust chambers are driven as the cutting head (24) moves in the X-axis direction.
摘要:
A P++-type first diffusion layer is formed by diffusing P-type impurities on a front side of an N−-type semiconductor substrate, and an N-type fourth diffusion layer which is shallower than the first diffusion layer is formed by diffusing N-type impurities on the front side, and a P-type second diffusion layer is locally formed in a ring-shape so as to be exposed on the lateral side by diffusing P-type impurities on the back side, and P-type impurities are diffused on the back side of the substrate and a P+-type third diffusion layer is locally formed so as to be distributed inward from the second diffusion layer and not to be exposed to the lateral side, and the P-type second diffusion layer and the P+-type third diffusion layer are formed in the two-stage structure, thereby various characteristics can be improved.
摘要:
A semiconductor device includes: a semiconductor layer of a first conductivity type, a plurality of trenches provided on a major surface side of the semiconductor layer, an insulating film provided on an inner wall surface and on top of the trench, a conductive material surrounded by the insulating film and filling the trench, a first semiconductor region of a second conductivity type provided between the trenches, a second semiconductor region of the first conductivity type provided in a surface portion of the first semiconductor region, a mesa of the semiconductor layer provided between the trenches of a Schottky barrier diode region adjacent to a transistor region including the first semiconductor region and the second semiconductor region, a control electrode connected to the conductive material filling the trench of the transistor region and a main electrode provided in contact with a surface of the first semiconductor region, the second semiconductor region, a surface of the mesa and a part of the conductive material filling the trench of the Schottky barrier diode region. The part is exposed through the insulating film.
摘要:
A hybrid thermal cutting apparatus has both a laser head and a plasma torch, both of which can be controlled independently, can perform both laser processing and plasma processing, thus reducing the running costs. A large number of cutting lines for cutting out various types of manufactured products from plate materials are classified into a laser cutting type and a plasma cutting type, according to the cutting length, whether they are the external periphery of manufactured products or apertures, the size of the manufactured products or the apertures, the required process accuracy, the plate thickness, or the like. The lines of the laser cutting type are cut by laser processing, while the lines of the plasma cutting type are cut by plasma processing.
摘要:
A method for inhibiting or blocking molecular generating and/or inducing functions of molecules using an inhibitory or blocking agent of the formula: wherein R1-6 are as defined herein.