摘要:
A stack-type capacitor includes a lower electrode, a dielectric layer formed on the lower electrode, and an upper electrode formed on the dielectric layer, wherein the lower electrode includes a first metal layer having a cylindrical shape and a second metal layer filled in the first metal layer. In the capacitor, an amount of oxygen included in the lower electrode is decreased to suppress oxidation of a TiN layer. Thus, a stable stack-type capacitor may be formed, which increases greatly the performance of highly integrated DRAMs.
摘要:
The present invention provides a method of coating the surface of an inorganic powder comprising; (a) providing an alcohol solution of an alcohol-soluble metal salt and an alcohol solution of an amine compound; and (b) mixing and stirring the two alcohol solutions with an inorganic powder and water, thereby coating the surface of the inorganic powder with a metal hydroxide produced from the alcohol-soluble metal salt. The inorganic powders coated with metal oxide manufactured according to the present invention exist independently without substantial agglomeration, and the metal oxide coating is deposited substantially only on the surface of the inorganic powder with uniform thickness without substantial clustering among the inorganic powders. Consequently, when a Ni electrode layer is prepared using the titanium oxide coated Ni powders manufactured according to the present invention, not only quality but also yield of MLCC can be improved.
摘要:
There is provided a method of preparing nano scale nickel powders by wet reducing process. An embodiment of the method of preparing nickel powders comprises preparing the first solution formed by mixing water and a base, preparing the second solution formed by mixing a polyol and a nickel compound, preparing a mixture by mixing the first solution and the second solution, heating the mixture, and separating the nickel powders generated during heating.
摘要:
The memory device includes a source region and a drain region in a substrate and spaced apart from each other; a memory cell formed on a surface of the substrate, wherein the memory cell connects the source region and the drain region and includes a plurality of nanocrystals; a control gate formed on the memory cell. The memory cell includes a first tunneling oxide layer formed on the substrate; a second tunneling oxide layer formed on the first tunneling oxide layer; and a control oxide layer formed on the second tunneling oxide layer. The control oxide layer includes the nanocrystals. The second tunneling oxide layer, having an aminosilane group the increases electrostatic attraction, may be hydrophilic, enabling the formation of a monolayer of the nanocrystals.
摘要:
A mixed dispersant which can improve the efficiency of dispersing metal powder by effectively adsorbing on the surface of the metal powder and preventing aggregation thereof, and a paste composition and a dispersion method using the same are provided. A multilayer ceramic capacitor (MLCC) is also provided. The mixed dispersant includes a basic dispersant and an acidic dispersant in accordance with the acidity and basicity of nickel metal powder and thus can achieve an optimal dispersion efficiency. An improvement in the dispersion efficiency as such can consequently suppress aggregation of the nickel metal powder during the preparation of a conductive paste composition containing a nickel metal powder, and therefore a larger amount of the nickel metal powder can be used in the paste composition. The increased amount of nickel metal powder allows producing an internal nickel electrode having improved electric properties and mechanical properties during the production of MLCCs.
摘要:
Carbon-containing nickel-particle powder is provided. The carbon-containing nickel-particle powder has improved shrinkage property when fired due to the presence of carbon. Also, the carbon-containing nickel-particle powder has a very restricted degree of forming agglomerates.
摘要:
Provided are non-magnetic nickel powders and a method for preparing the same. The nickel powders are non-magnetic and have a HCP crystal structure. An exemplary method includes (a) dispersing nickel powders with a FCC crystal structure in an organic solvent to prepare a starting material dispersion, and (b) heating the starting material dispersion to transform the nickel powders with the FCC crystal structure to the nickel powders with the HCP crystal structure. The nickel powders do not exhibit magnetic agglomeration or aggregation phenomenon. Therefore, exemplary pastes for inner electrode formation in various electronic devices, which contain the nickel powders of the present disclosure, can be provided in a relatively uniform, well-dispersed state because of the reduced aggregation and agglomeration of the nickel powder. Also, inner electrodes made of the nickel powders can have a low impedance value even at high frequency band.
摘要:
A photo-luminescent (PL) liquid crystal display (LCD) including a blue dichroic mirror layer disposed under a light emitting layer is provided. Visible light generated from the light emitting layer is mostly reflected to the front side of the PL LCD, thereby increasing the light utilization efficiency thereof. A blue PL quantum dot layer is formed in blue light regions, thereby improving a narrow viewing angle and an orientation in blue pixels. An ultraviolet (UV) filter blocking UV light in the ambient light is formed to protect the light emitting layer from the excitation caused by external light, thereby preventing degradation of contrast caused by an undesired light emission.
摘要:
A transparent electrode on at least one surface of a transparent substrate may include graphene doped with a p-dopant. The transparent electrode may be efficiently applied to a variety of display devices or solar cells.
摘要:
Methods of preparing graphene nano ribbons may include forming a graphene sheet on at least one surface of a substrate, forming a plasma mask having a nano pattern on the graphene sheet, and forming a nano pattern on the graphene sheet by plasma treating a stack structure on which the plasma mask is formed.