Abstract:
The present invention provides methods for conformally or superconformally coating and/or uniformly filling structures with a continuous, conformal layer or superconformal layer. Methods of the present invention improve conformal or superconformal coverage of surfaces and improve fill in recessed features compared to conventional physical deposition and chemical deposition methods, thereby minimizing formation of voids or gaps in a deposited conformal or superconformal layer. The present methods are capable of coating or filling features useful for the fabrication of a broad class of electronic, electrical and electromechanical devices.
Abstract:
The present invention provides methods for conformally or superconformally coating and/or uniformly filling structures with a continuous, conformal layer or superconformal layer. Methods of the present invention improve conformal or superconformal coverage of surfaces and improve fill in recessed features compared to conventional physical deposition and chemical deposition methods, thereby minimizing formation of voids or gaps in a deposited conformal or superconformal layer. The present methods are capable of coating or filling features useful for the fabrication of a broad class of electronic, electrical and electromechanical devices.
Abstract:
A mobile wireless bridge (MWB) (110) is able to bridge traffic in either direction between a wireless LAN (140) and a wireless WAN (130), and support roaming of LAN clients (141-143, 151-153) and of the MW (110) itself. Through the MWB (110), wired (150) and wireless LAN (140) clients (141-143, 151-153) and users are provided Internet (190) connectivity even if the LAN client (141-143, 151-153) is not otherwise able to access the wireless WAN (120). Preferred MWBs (110) will utilize mobile cellular communication networks 100 as part of a WAN (120, 130) used to obtain access to Internet (190) resources. LAN clients (141-143, 151-153) and users can also access each other through the MWB (110) with the MWB (110) functioning as a hub, switch, gateway, and/or access point. Some MWBs (110) will be adapted to access multiple types of LANs (140, 150) and multiple types of WANs (120, 130).
Abstract:
An input reference timing signal oscillator of a phase-locked loop has a computer algorithm which adaptively models the multiple frequencies of an oscillator following a training period. The oscillator is part of a phase-locked loop and the oscillation frequency thereof is controlled in response to the phase detector output. The computer algorithm processes the control signal applied to the oscillator. The computer algorithm updates the characteristics of the model relating to the aging and temperature of the oscillator, using for example, a Kalman filter as an adaptive filter. By the algorithm, the subsequent model predicts the future frequency state of the oscillator on which it was trained. The predicted frequency of the model functions as a reference to correct the frequency of the oscillator in the event that no input reference timing signal is available. With the model updating algorithm, oscillators of low stability performance may be used as cellular base station reference oscillator.
Abstract:
A method comprises determining a first and a second sub-carrier associated with a channel, and multiplying a signal received on the first sub-carrier with a first number to form a first resulting signal. The first number multiplied with a known signal transmitted by a second transmitting node on the first sub-carrier equals a constant value. A signal received on the second sub-carrier is multiplied with a second number to form a second resulting signal. The second number multiplied with the known signal transmitted by the second transmitting node on the second sub-carrier equals the constant value. The second resulting signal is subtracted from the first resulting signal to obtain a signal for which interference from the second transmitting node is suppressed, and the channel is estimated based on the obtained signal.
Abstract:
Various examples of the present disclosure describe a random access method and device in a CR system. The method includes: generating, by a base station device, a spectrum handover command, wherein the spectrum handover command comprises random access backoff time parameter information; and sending, by the base station device, the spectrum handover command to a user equipment in a cell to instruct the UE to initiate, during a spectrum handover procedure, a random access procedure using the random access backoff time parameter information. According to the various examples of the present disclosure, the random access backoff time parameter information is carried in the spectrum handover command, so that a random access conflict is suppressed during the spectrum handover procedure of the CR system. A large number of UEs that intensively perform random access on a target working frequency are pre-dispersed in time. As such, the delay and the failure probability of the random access on the target working frequency during the spectrum handover procedure are reduced, and thus the failure probability of the spectrum handover and the service interruption time are reduced, so that the user experience of the CR system is improved.
Abstract:
A curable composition comprises (a) at least one polyorganosiloxane, fluorinated polyorganosiloxane, or combination thereof comprising reactive silane functionality comprising at least two hydroxysilyl moieties; (b) at least one polyorganosiloxane, fluorinated polyorganosiloxane, or combination thereof comprising reactive silane functionality comprising at least two hydrosilyl moieties; and (c) at least one photoactivatable composition comprising at least one organoborate salt selected from tetraarylborate, triarylorganoborate, diaryldiorganoborate, and aryltriorganoborate salts (and combinations thereof) of at least one base selected from amidines, guanidines, phosphazenes, proazaphosphatranes, and combinations thereof; wherein at least one of the components (a) and (b) has an average reactive silane functionality of at least three.
Abstract:
Disclosed is a compound of formula (I). Wherein R1, R2Ar and Cy are as defined herein, or a pharmaceutically acceptable salt thereof. Also disclosed are pharmaceutical compositions of the compound of formula (I), methods of making the compounds of formula I, and methods of using the compounds of formula (I) to treat a disorder associated with activation of CCR10.