摘要:
A system and method are presented for use in the object reconstruction. The system comprises an illuminating unit, and an imaging unit (see FIG. 1). The illuminating unit comprises a coherent light source and a generator of a random speckle pattern accommodated in the optical path of illuminating light propagating from the light source towards an object, thereby projecting onto the object a coherent random speckle pattern. The imaging unit is configured for detecting a light response of an illuminated region and generating image data. The image data is indicative of the object with the projected speckles pattern and thus indicative of a shift of the pattern in the image of the object relative to a reference image of said pattern. This enables real-time reconstruction of a three-dimensional map of the object.
摘要:
An imaging system is presented for imaging objects within a field of view of the system. The imaging system comprises an imaging lens arrangement, a light detector unit at a certain distance from the imaging lens arrangement, and a control unit connectable to the output of the detection unit. The imaging lens arrangement comprises an imaging lens and an optical element located in the vicinity of the lens aperture, said optical element introducing aperture coding by an array of regions differently affecting a phase of light incident thereon which are randomly distributed within the lens aperture, thereby generating an axially-dependent randomized phase distribution in the Optical Transfer Function (OTF) of the imaging system resulting in an extended depth of focus of the imaging system. The control unit is configured to decode the sampled output of the detection unit by using the random aperture coding to thereby extract 3D information of the objects in the field of view of the light detector unit.
摘要:
An imaging system and method are presented for use in imaging with zoom. The system comprises a pixel detector array (PDA), an optical focusing arrangement, and a spatial filter configured and operable to selectively switch between at least two transmitting states. Distributions of an optical resolution of the optical focusing arrangement and of a geometrical resolution of the PDA define an aliasing window along an at least one direction.
摘要:
A method for mapping includes projecting onto an object a pattern of multiple spots having respective positions and shapes, such that the positions of the spots in the pattern are uncorrelated, while the shapes share a common characteristic. An image of the spots on the object is captured and processed so as to derive a three-dimensional (3D) map of the object.
摘要:
An imaging arrangement and method for extended the depth of focus are provided. The imaging arrangement comprises an imaging lens having a certain affective aperture, and an optical element associated with said imaging lens. The optical element is configured as a phase-affecting, non-diffractive optical element defining a spatially low frequency phase transition. The optical element and the imaging lens define a predetermined pattern formed by spaced-apart substantially optically transparent features of different optical properties. Position of at least one phase transition region of the optical element within the imaging lens plane is determined by at least a dimension of said affective aperture.
摘要:
An optical system and method are presented to produce a desired illuminating light pattern. The system comprises a light source system configured and operable to produce structured light in the form of a plurality of spatially separated light beams; and a beam shaping arrangement. The beam shaping arrangement is configured as a diffractive optical unit configured and operable to carry out at least one of the following: (i) combining an array of the spatially separated light beams into a single light beam thereby significantly increasing intensity of the illuminating light; (ii) affecting intensity profile of the light beam to provide the illuminating light of a substantially rectangular uniform intensity profile.
摘要:
A method of image compression, comprising: providing image-data encoding light; transforming said light from an image space to a transform space utilizing an optical component; and converting said transformed light into electrical signals, which electrical signals represent a compressed representation of said image data.
摘要:
The instant invention is an optical imaging system that produces images of acceptable quality of objects which are located at a wide variety of distances from the optical imaging system. A preferred embodiment of the optical imaging system includes an object (10), an auxiliary lens (12), a composite phase marsk (14) and a detector (18) arranged along an optical axis (20). Light from the object (10) is focused by the auxiliary lens (12) in tandem with the composite phase mark (14), producing an image (16) which is incident th detector (18).
摘要:
An ophthalmic lens is presented. The lens includes a toric optical zone and a phase-affecting, non-diffractive optical element for extending depth of focus of imaging.
摘要:
An imaging lens structure and method of imaging are presented. The imaging lens structure comprising a lens region defining an effective aperture of the lens structure. The lens region comprises an arrangement of lens zones distributed within the lens region and comprising zones of at least two different optical functions differently affecting light passing therethrough. The zones of at least two different optical functions are arranged in an interlaced fashion along said lens region corresponding to a surface relief of the lens region such that adjacent lens zones of different optical functions are spaced apart from one another along an optical axis of the lens structure a distance larger than a coherence length of light at least one spectral range for which said lens structure is designed.