Abstract:
A millimeter-wave communication system includes (i) an antenna comprising a reflector and a feed, the feed comprising a first waveguide, (ii) a Printed Circuit Board (PCB) comprising a modem, a processor, and a radio receiver coupled with a probe, the PCB is mechanically fixed to one end of the feed, such that the PCB is mechanically held by the feed, and the probe is located in a position allowing reception of millimeter-waves exiting the first waveguide towards the PCB, (iii) an Ethernet connector, (iv) at least one flexible cable operative to carry Ethernet signals between the first PCB and the Ethernet connector, and (v) a box housing the PCB and the Ethernet connector. The Ethernet connector and the feed are mechanically fixed to the box, and the only mechanical connection between the PCB and the box is via the feed.
Abstract:
A radome comprises a structure covering an antenna, the structure being substantially transparent to radiation of the antenna in a first direction and being less transparent to radiation of the antenna when deviating from the first direction, thereby imparting a directional profile to radiation of the antenna. The millimeter wave antenna structure comprises a sub-reflector lens, and a reflector, the sub-reflector lens in turn comprising a reflecting metal plate and a lens shaped dielectric material, the lens shaped dielectric material and the reflecting metal plate being shaped together to provide a predetermined radiation illumination pattern on the reflector. A waveguide matching holder connects a circular cross section waveguide via a circular cavity, and a rectangular waveguide feed via a rectangular cavity, the rectangular and the circular cavities being shaped to merge into each other.
Abstract:
A system for matching impedances of a bare-die Integrated Circuit and bonding wires. A bare-die Integrated Circuit is configured to output or input, at an impedance of Z3, a millimeter-wave signal from three electrically conductive contacts. Three electrically conductive pads, printed on one of the laminas of a Printed Circuit Board (PCB) are connected to the three electrically conductive contacts via three bonding wires respectively, the bonding wires have a characteristic impedance of Z1, wherein Z1>Z3. One of the electrically conductive pads extends to form a transmission line signal trace of length L, the transmission line signal trace having a first width resulting in characteristic impedance of Z2, wherein Z2>Z3. The transmission line signal trace widens to a second width, higher than the first width, after the length of L, decreasing the characteristic impedance of the transmission line signal trace to substantially Z3 after the length L and onwards.
Abstract:
Systems and methods for communicating through a glass window barrier, in which one communication device, placed outdoors near the glass window, utilizes optical signals to propagate communication signals through the glass window, and thereby communicate with another communication device placed indoors near the same glass window. The outdoor communication device receives power from a power source located indoors, in which power is transported from the indoor power source to the outdoor communication device through the same glass window in a form of an alternating magnetic field. The outdoor communication device may be either placed near the glass window or mechanically fixed to the glass window on one side, and the indoor communication device may be either placed near the glass window or mechanically fixed to the glass window on the other side. Certain known properties of glass windows are exploited, such as transparency to both optical radiation and magnetic fields.
Abstract:
Various systems and methods for fault-tolerant and otherwise optimized communication, in which a system includes communication nodes connected by wireless data links together forming a ring structure, as well as additional wireless data links operative to partition the ring structure into multiple sub-ring structures. The system is operative to select, per each of the sub-ring structures, one of the wireless data links to remain dormant, thereby effectively creating a certain communication tree structure. The system is further operative, upon detecting a communication problem or inefficiency in any or all of the sub-ring structures, to shut-down, per sub-ring structure detected, the problematic or otherwise inefficient wireless data link, and to reactivate instead the dormant wireless data link, thereby effectively switching to a new communication tree structure, and thus resolving the problem or otherwise improving efficiency.
Abstract:
Systems and methods for: suggesting network topologies for a wireless communication network such as a millimeter-wave network; using drones for determining a line-of-sight condition between pairs of geospatial locations where communication nodes in the network are to be placed; and wirelessly interconnecting pairs of nodes in the network according to the a line-of-sight conditions previously determined using the drones. The drones may test for a line-of-sight condition using any number of methods, including laser range-finding, signaling between two of the drones, and pattern matching of visual imagery. A network planning tool may be used to suggest the network topologies, communicate and control the drones, and come to a final conclusion regarding the actual network topology selected, the placement of the communication nodes, and the specific wireless links to be used in interconnecting the nodes in the final network.
Abstract:
Various embodiments of a communication system operative to form, direct, and narrow communication beams using an array of electromagnetic radiators and a beam-narrowing architecture. A beam-width of an electromagnetic beam is narrowed, thereby increasing the concentration of electromagnetic energy in the beam and achieving a significant antenna gain. In various embodiments, the direction of an electromagnetic beam may be altered to improve communication between a transmitter and a receiver. In various embodiments, the system is a millimeter-wave system with a millimeter-wave array and millimeter-wave beams.
Abstract:
A method for accurately guiding millimeter-waves includes the following steps: Filtering millimeter-waves by applying the millimeter-waves at a first shape aperture of a filter waveguide, resulting in filtered millimeter-waves exiting a second shape aperture of the filter waveguide. Transporting the filtered millimeter-waves over a distance of between 9 centimeters and 25 centimeters, by applying the filtered millimeter-waves to an extruded waveguide having a length of between 9 centimeters and 25, and having a cavity featuring a cross-section that is accurate to within +/−0.05 millimeters throughout the length of the extruded waveguide, resulting in transported millimeter-waves. And producing, on a reflector, an illumination pattern that is accurate to a degree that allows conforming to a first level of radiation pattern accuracy, by applying the transported millimeter-waves at a focal point of the reflector.
Abstract:
A millimeter-wave communication system includes (i) an antenna comprising a reflector and a feed, the feed comprising a first waveguide, (ii) a Printed Circuit Board (PCB) comprising a modem, a processor, and a radio receiver coupled with a probe, the PCB is mechanically fixed to one end of the feed, such that the PCB is mechanically held by the feed, and the probe is located in a position allowing reception of millimeter-waves exiting the first waveguide towards the PCB, (iii) an Ethernet connector, (iv) at least one flexible cable operative to carry Ethernet signals between the first PCB and the Ethernet connector, and (v) a box housing the PCB and the Ethernet connector. The Ethernet connector and the feed are mechanically fixed to the box, and the only mechanical connection between the PCB and the box is via the feed.
Abstract:
Various embodiments of a millimeter-wave wireless point-to-point or point-to-multipoint communication system which maintains a stable communication link even in the face of problems such as vibration or other mechanical disturbance to transceivers in the system or radio interference to the transmission beam produced by a transmitter and received by a receiver. The system comprises a transmitter, a receiver, a high-gain antenna, and allied equipment as described. In various embodiments, a beam is mechanically or electronically redirected to improve system performance. In various embodiments, the modulation schemes or coding schemes of the transmission are altered to improve system performance.