Abstract:
Methods and supercapacitor-emulating fast-charging batteries are provided. Methods comprise configuring a fast-charging battery to emulate a supercapacitor with given specifications by operating the fast-charging battery only within a partial operation range which is defined according to the given specifications of the supercapacitor and is smaller than 20%, possibly 5% or 1%, of a full operation range of the fast-charging battery. Devices are provided, which comprise control circuitry and a modified fast-charging lithium ion battery having Si, Ge and/or Sn-based anode active material and designed to operate at 5 C at least and within a range of 5% at most around a working point of between 60-80% lithiation of the Si, Ge and/or Sn-based anode active material, wherein the control circuitry is configured to maintain a state of charge (SOC) of the battery within the operation range around the working point.
Abstract:
Color conversion films for an LCD (liquid crystal display) having RGB (red, green, blue) color filters, as well as such displays, formulations, precursors and methods are provided, which improve display performances with respect to color gamut, energy efficiency, materials and costs. The color conversion films absorb backlight illumination and convert the energy to green and/or red emission at high efficiency, specified wavelength ranges and narrow emission peaks. The color conversion films may comprise at least one of: polydimethylsiloxane hydroxy terminated, dendritic polyol or polyvinylpyrrolidone.
Abstract:
Methods, stacks and electrochemical cells are provided, which improve production processes and yield flexible and durable electrode stacks. Methods comprise depositing an electrode slurry on a sacrificial film to form an electrode thereupon, wherein the electrode slurry comprises a first solvent, attaching (e.g., laminating) a current collector film, which is produced at least partly using a second solvent, onto the formed electrode, to yield a stack, wherein a binding strength of the electrode to the current collector film is higher than a binding strength of the electrode to the sacrificial film, and delaminating the sacrificial film from the electrode while maintaining the attachment of the electrode to the current collector film. Additional layers such as a cell separator and an additional electrode may be further attached using similar steps.
Abstract:
Lithium ion batteries and cells, as well as operating and testing methods are provided, which utilize a transparent pouch to monitor the battery in operational condition and/or in operation. Covers may be used to prevent illumination of battery components when testing is not required, and the covers may be removed or have modifiable transparency configured to enable visual monitoring. Indicators in the transparent pouch may be associated with cell components such as electrodes and electrolyte to indicate their condition. For example, the transparent pouch may be used to monitor battery safety, e.g., by enabling to monitor lithium metallization on an anode (directly or via indicators), monitor battery lifetime and other operational parameters, without having to damage the battery.
Abstract:
Color conversion films for a LCD (liquid crystal display) having RGB (red, green, blue) color filters, as well as such displays, formulations, precursors and methods are provided, which improve display performances with respect to color gamut, energy efficiency, materials and costs. The color conversion films absorb backlight illumination and convert the energy to green and/or red emission at high efficiency, specified wavelength ranges and narrow emission peaks. For example, rhodamine-based fluorescent compounds are used in matrices produced by sol gel processes and/or UV (ultraviolet) curing processes which are configured to stabilize the compounds and extend their lifetime—to provide the required emission specifications of the color conversion films. Film integration and display configurations further enhance the display performance with color conversion films utilizing various color conversion elements. Fluorescent emission may be enhanced by plasmon resonance of coupled nanoparticles.
Abstract:
Color conversion films for a LCD (liquid crystal display) having RGB (red, green, blue) color filters, as well as such displays, formulations, precursors and methods are provided, which improve display performances with respect to color gamut, energy efficiency, materials and costs. The color conversion films absorb backlight illumination and convert the energy to green and/or red emission at high efficiency, specified wavelength ranges and narrow emission peaks. For example, rhodamine-based fluorescent compounds are used in matrices produced by sol gel processes and/or UV (ultraviolet) curing processes which are configured to stabilize the compounds and extend their lifetime—to provide the required emission specifications of the color conversion films. Film integration and display configurations further enhance the display performance with color conversion films utilizing various color conversion elements. Fluorescent emission may be enhanced by plasmon resonance of coupled nanoparticles.
Abstract:
This invention is directed to photoluminescent compounds based on rhodamine dyes with green emission and uses thereof for photoluminescence based devices.
Abstract:
Electric vehicles (EVs), power trains and control units and methods are provided. Power trains comprise a main fast-charging lithium ion battery (FC), configured to deliver power to the electric vehicle, a supercapacitor-emulating fast-charging lithium ion battery (SCeFC), configured to receive power and deliver power to the FC and/or to the EV, and a control unit. Both the FC and the SCeFC have anodes based on the same anode active material, and the SCeFC is configured to operate at high rates within a limited operation range of state of charge (SoC), maintained by the control unit, which is further configured to manage the FC and the SCeFC with respect to power delivery to and from the EV, respectively, and manage power delivery from the SCeFC to the FC according to specified criteria that minimize a depth of discharge and/or a number of cycles of the FC.
Abstract:
A system and method for fast charging of a lithium-ion battery, including: continuously monitoring a state of charge (SOC) of the lithium-ion battery; during a normal mode of operation and upon detecting that the battery is at the predetermined low charge level, discontinuing the discharge; upon detecting that the battery is connected to a charger, providing charging rate of at least 4 C for at least part of charging; and upon detecting that the battery, while connected to the charger is at the predetermined high charge level, discontinue the charging, wherein the predetermined low charge level and the predetermined high charge level define a consumable capacity of the battery, wherein the consumable capacity is below 50% of the full capacity of the battery.
Abstract:
A system and method for fast charging of a lithium-ion battery, including: continuously monitoring a state of charge (SOC) of the lithium-ion battery; during a normal mode of operation and upon detecting that the battery is at the predetermined low charge level, discontinuing the discharge; upon detecting that the battery is connected to a charger, providing charging rate of at least 4C for at least part of charging; and upon detecting that the battery, while connected to the charger is at the predetermined high charge level, discontinue the charging, wherein the predetermined low charge level and the predetermined high charge level define a consumable capacity of the battery, wherein the consumable capacity is below 50% of the full capacity of the battery.