Abstract:
The present invention relates to a steam to carbon ratio control device including: a heat source, and an evaporation mixer and a steam separator interconnected by pipelines, said connecting pipelines of the evaporation mixer and the steam separator are provided with a temperature control device and a pressure control device, said evaporation mixer is provided with a natural gas inlet, a desalinated water inlet and a mixed gas outlet, the inlet of said heat source is connected with a end closer to the natural gas inlet of the evaporation mixer, the outlet of said heat source is connected to a end closer to the mixed gas outlet. Comparing with the prior art, the beneficial effect of the present invention is that it can accurately control the proportion of natural gas to steam and stably control the flow rates of natural gas and steam.
Abstract:
A process for converting polyhydric alcohols to monoalcohols in a counter current column reactor with a metal based catalyst supported on a porous membrane coated over a tubular system that delivers hydrogen where a hydrocarbon (low polarity) liquid solvent is fed at the bottom of the column reactor and an aqueous liquid having polyhydric alcohols therein is fed into the top of the reactor such that the aqueous liquid flows countercurrent to the low polarity solvent liquid and further wherein the low polarity solvent liquid is less dense than the aqueous liquid such that the two liquids are subject to phase separation. Monoalcohols are formed by hydrogenolysis reactions of polyhydric alcohols on the metal catalyst. Monoalcohols phase separate from the aqueous phase to the hydrocarbon solvent. Monoalcohols are further separated from the organic solvent.
Abstract:
A system for the production of synthesis gas, the system including a mixing apparatus configured for combining steam with at least one carbonaceous material to produce a reformer feedstock; and a reformer comprising a cylindrical vessel containing a plurality of coiled tubes, wherein each of the plurality of coiled tubes has a vertical height in the range of from about 40 feet 12.2 m) to about 100 feet (30.5 m) and a coil length that is at least four times the vertical height; at least one burner configured to combust a fuel and provide heat to maintain the reformer at a reformer temperature; at least one outlet for reformer product comprising synthesis gas; and at least one outlet for flue gas produced via combustion of fuel in the burners. A suitable mixing apparatus is also provided.
Abstract:
Integrated gaseous fuel catalytic partial oxidation (CPOX) reformer and fuel cell systems can include a plurality or an array of spaced-apart CPOX reactor units, each reactor unit including an elongate tube having a gas-permeable wall with internal and external surfaces, the wall enclosing an open gaseous flow passageway with at least a portion of the wall having CPOX catalyst disposed therein and/or comprising its structure. The catalyst-containing wall structure and open gaseous flow passageway enclosed thereby define a gaseous phase CPOX reaction zone, the catalyst-containing wall section being gas-permeable to allow gaseous CPOX reaction mixture to diffuse therein and hydrogen rich product reformate to diffuse therefrom. The gaseous fuel CPOX reformer also can include one or more igniters, and a source of gaseous reformable fuel. The hydrogen-rich reformate can be converted to electricity within a fuel cell unit integrated with the gaseous fuel CPOX reformer.
Abstract:
A membrane reactor with divergent-flow channel includes a reaction pipeline, a membrane and a purge (sweep) pipeline sequentially arranged from inside to outside or from outside to inside. The reaction pipeline has a cross-sectional area increment from the front (upstream) end to the rear (downstream) end, so that the flow velocity of a reactant gas is decreased from the upstream end to the downstream end to extend the residence time of the reactant gas and improve the reaction rate of the reactant gas. The sweep pipeline has a cross-sectional area decrement from the upstream end to the downstream end, so that the flow velocity of a purging (sweeping) gas is increased from the upstream end to the downstream end to accelerate the reactant gas, and a product gas generated from the reaction passes through the membrane and enters the sweep pipeline to improve the reaction efficiency.
Abstract:
The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.
Abstract:
The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.
Abstract:
The invention relates to the production of acrolein and/or acrylic acid from glycerol, and more particularly to a method for continuous production of a stream comprising acrolein by dehydration of glycerol, comprising cycles of reaction and regeneration of a dehydration catalyst.
Abstract:
Process for performing an endothermic reaction in a reactor containing catalyst tubes, the catalyst tubes containing a catalyst promoting the endothermic reaction, the process comprising the steps of, a. contacting the catalyst contained in the catalyst tubes with a feed flow passing through the channels from an entrance end to an exit end, b. contacting an outer surface of the catalyst tubes with a flow of a heating medium having an initial heating temperature and flowing co-currently with the flow of feeds to heat the surface by convection, c. mixing at least part of the heating medium after having been contacted with the catalyst tubes with a flow of fresh heating medium having a start temperature higher than the initial heating temperature to form the co-current heating medium having the initial heating temperature and reactor for carrying out the process.
Abstract:
Process for performing an endothermic reaction in a reactor containing catalyst tubes, the catalyst tubes containing a catalyst promoting the endothermic reaction, the process comprising the steps of, a. contacting the catalyst contained in the catalyst tubes with a feed flow passing through the channels from an entrance end to an exit end, b. contacting an outer surface of the catalyst tubes with a flow of a heating medium having an initial heating temperature and flowing co-currently with the flow of feeds to heat the surface by convection, c. mixing at least part of the heating medium after having been contacted with the catalyst tubes with a flow of fresh heating medium having a start temperature higher than the initial heating temperature to form the co-current heating medium having the initial heating temperature and reactor for carrying out the process.