Preferentially deposited lubricant to prevent anti-stiction in micromechanical systems
    21.
    发明授权
    Preferentially deposited lubricant to prevent anti-stiction in micromechanical systems 有权
    预先沉积的润滑剂以防止微机械系统中的抗静电

    公开(公告)号:US07723812B2

    公开(公告)日:2010-05-25

    申请号:US11556145

    申请日:2006-11-02

    CPC classification number: B81C1/0096 B81B3/0005 B81C2201/112 B82Y30/00

    Abstract: Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.

    Abstract translation: 本发明的实施例总体上涉及一种由于存在降低在机电装置中的各种运动部件之间出现静电的可能性的润滑剂而具有改善的使用寿命的装置。 本发明的实施例还通常包括一种装置和一种形成装置的方法,其具有一个或多个表面或区域,其具有设置在其上的润滑剂体积,其用作即将供应的“新鲜”润滑剂以防止发生粘连 在设备内发现的互动组件之间。 在一个方面,润滑剂体积内的组分形成气体或气相,其降低了所形成的装置中与静电相关的故障的机会。 在一个示例中,本发明的方面对于制造和使用诸如MEMS器件,NEMS器件或其它类似的热或流体器件的微机械器件可能特别有用。

    Preferentially deposited lubricant to prevent anti-stiction in micromechanical systems
    23.
    发明授权
    Preferentially deposited lubricant to prevent anti-stiction in micromechanical systems 有权
    预先沉积的润滑剂以防止微机械系统中的抗静电

    公开(公告)号:US07616370B2

    公开(公告)日:2009-11-10

    申请号:US11556155

    申请日:2006-11-02

    Abstract: Embodiments of the present invention generally relate to a device that has an improved usable lifetime due to the presence of a lubricant that reduces the likelihood of stiction occurring between the various moving parts in an electromechanical device. Embodiments of the present invention also generally include a device, and a method of forming a device, that has one or more surfaces or regions that have a volume of lubricant disposed thereon that acts as a ready supply of “fresh” lubricant to prevent stiction occurring between interacting components found within the device. In one aspect, components within the volume of lubricant form a gas or vapor phase that reduces the chances of stiction-related failure in the formed device. In one example, aspects of this invention may be especially useful for fabricating and using micromechanical devices, such as MEMS devices, NEMS devices, or other similar thermal or fluidic devices.

    Abstract translation: 本发明的实施例总体上涉及一种由于存在降低在机电装置中的各种运动部件之间出现静电的可能性的润滑剂而具有改善的使用寿命的装置。 本发明的实施例还通常包括一种装置和一种形成装置的方法,其具有一个或多个表面或区域,其具有设置在其上的润滑剂体积,其用作即将供应的“新鲜”润滑剂以防止发生粘连 在设备内发现的互动组件之间。 在一个方面,润滑剂体积内的组分形成气体或气相,其降低了所形成的装置中与静电相关的故障的机会。 在一个示例中,本发明的方面对于制造和使用诸如MEMS器件,NEMS器件或其它类似的热或流体器件的微机械器件可能特别有用。

    Al2O3 atomic layer deposition to enhance the deposition of hydrophobic or hydrophilic coatings on micro-electromechanical devices
    24.
    发明授权
    Al2O3 atomic layer deposition to enhance the deposition of hydrophobic or hydrophilic coatings on micro-electromechanical devices 有权
    Al2O3原子层沉积,以增强疏水或亲水涂层在微机电器件上的沉积

    公开(公告)号:US07553686B2

    公开(公告)日:2009-06-30

    申请号:US10910525

    申请日:2004-08-02

    Abstract: Micro-mechanical devices, such as MEMS, having layers thereon, and methods of forming the layers, are disclosed. In one aspect, a method may include forming a layer including an oxide of aluminum over at least a portion of a micro-mechanical device, and coating the layer by bonding material to surface hydroxyl groups of the layer. In another aspect, a method may include introducing a micro-mechanical device into an atomic layer deposition chamber, and substantially filling nanometer sized voids of the micro-mechanical device by using atomic layer deposition to introduce material into the voids. In a still further aspect, a method may include introducing an alkylaminosilane to a micro-mechanical device having a surface hydroxyl group, and bonding a silane to the micro-mechanical device by reacting the alkylaminosilane with the surface hydroxyl group.

    Abstract translation: 公开了诸如MEMS的微机械装置,其上具有层,以及形成层的方法。 在一个方面,一种方法可以包括在微机械装置的至少一部分上形成包括铝氧化物的层,并且通过将材料粘合到该层的表面羟基上来涂覆该层。 在另一方面,一种方法可以包括将微机械装置引入原子层沉积室,并且通过使用原子层沉积将材料引入空隙中,基本上填充微机械装置的纳米尺寸的空隙。 在另一方面,一种方法可以包括将烷基氨基硅烷引入到具有表面羟基的微机械装置中,并且通过使烷基氨基硅烷与表面羟基反应将硅烷键合到微机械装置。

    Micromachine and manufacturing method
    25.
    发明授权
    Micromachine and manufacturing method 有权
    微机械及制造方法

    公开(公告)号:US07189625B2

    公开(公告)日:2007-03-13

    申请号:US11243550

    申请日:2005-10-04

    CPC classification number: B81B3/0008 B81B2201/045 B81C2201/112

    Abstract: In a micromachine according to this invention, a polyimide film is formed on the surface of each electrode. The polyimide film is formed as follows. A substrate having each electrode and a counterelectrode are dipped in an electrodeposition polyimide solution, and a positive voltage is applied to the electrode. A material dissolved in the electrodeposition polyimide solution is deposited on a surface of the positive-voltage-applied electrode that is exposed in the solution, thus forming a polyimide film on the surface.

    Abstract translation: 在根据本发明的微型机器中,在每个电极的表面上形成聚酰亚胺膜。 聚酰亚胺膜如下形成。 将具有每个电极和反电极的基板浸渍在电沉积聚酰亚胺溶液中,并向电极施加正电压。 溶解在电沉积聚酰亚胺溶液中的材料沉积在暴露在溶液中的正电压施加电极的表面上,从而在表面上形成聚酰亚胺膜。

    Etch process for etching microstructures
    26.
    发明授权
    Etch process for etching microstructures 失效
    用于蚀刻微结构的蚀刻工艺

    公开(公告)号:US06936183B2

    公开(公告)日:2005-08-30

    申请号:US10265598

    申请日:2002-10-08

    Abstract: A two-step method of releasing microelectromechanical devices from a substrate is disclosed. The first step comprises isotropically etching a silicon oxide layer sandwiched between two silicon-containing layers with a gaseous hydrogen fluoride-water mixture, the overlying silicon layer to be separated from the underlying silicon layer or substrate for a time sufficient to form an opening but not to release the overlying layer, and the second step comprises adding a drying agent to substitute for moisture remaining in the opening and to dissolve away any residues in the opening that can cause stiction.

    Abstract translation: 公开了一种从基板释放微机电装置的两步法。 第一步包括用夹杂在两个含硅层之间的氧化硅层与氟化氢 - 水气体混合物进行各向同性蚀刻,所述上层硅层将从底层硅层或衬底分离足以形成开口但不 以释放上覆层,第二步骤包括加入干燥剂以代替残留在开口中的水分,并溶解开口中可能导致静电的残留物。

    Integrated method for release and passivation of MEMS structures
    27.
    发明授权
    Integrated method for release and passivation of MEMS structures 失效
    MEMS结构的释放和钝化的集成方法

    公开(公告)号:US06902947B2

    公开(公告)日:2005-06-07

    申请号:US10435757

    申请日:2003-05-09

    Abstract: Disclosed herein is a method of improving the adhesion of a hydrophobic self-assembled monolayer (SAM) coating to a surface of a MEMS structure, for the purpose of preventing stiction. The method comprises treating surfaces of the MEMS structure with a plasma generated from a source gas comprising oxygen and, optionally, hydrogen. The treatment oxidizes the surfaces, which are then reacted with hydrogen to form bonded OH groups on the surfaces. The hydrogen source may be present as part of the plasma source gas, so that the bonded OH groups are created during treatment of the surfaces with the plasma. Also disclosed herein is an integrated method for release and passivation of MEMS structures which may be adjusted to be carried out in a either a single chamber processing system or a multi-chamber processing system.

    Abstract translation: 本文公开了一种改进疏水性自组装单层(SAM)涂层到MEMS结构表面的粘附性的方法,以防止粘结。 该方法包括用包含氧气和任选的氢气的源气体产生的等离子体处理MEMS结构的表面。 处理氧化表面,然后与氢气反应以在表面上形成键合的OH基团。 氢源可以作为等离子体源气体的一部分存在,使得在用等离子体处理表面期间产生结合的OH基团。 本文还公开了一种用于MEMS结构的释放和钝化的集成方法,其可以被调整为在单室处理系统或多室处理系统中进行。

    Al2O3 atomic layer deposition to enhance the deposition of hydrophobic or hydrophilic coatings on micro-electromechcanical devices
    28.
    发明申请
    Al2O3 atomic layer deposition to enhance the deposition of hydrophobic or hydrophilic coatings on micro-electromechcanical devices 有权
    Al2O3原子层沉积,以增强疏水或亲水涂层在微电子设备上的沉积

    公开(公告)号:US20050012975A1

    公开(公告)日:2005-01-20

    申请号:US10910525

    申请日:2004-08-02

    Abstract: Micro-mechanical devices, such as MEMS, having layers thereon, and methods of forming the layers, are disclosed. In one aspect, a method may include forming a layer including an oxide of aluminum over at least a portion of a micro-mechanical device, and coating the layer by bonding material to surface hydroxyl groups of the layer. In another aspect, a method may include introducing a micro-mechanical device into an atomic layer deposition chamber, and substantially filling nanometer sized voids of the micro-mechanical device by using atomic layer deposition to introduce material into the voids. In a still further aspect, a method may include introducing an alkylaminosilane to a micro-mechanical device having a surface hydroxyl group, and bonding a silane to the micro-mechanical device by reacting the alkylaminosilane with the surface hydroxyl group.

    Abstract translation: 公开了诸如MEMS的微机械装置,其上具有层,以及形成层的方法。 在一个方面,一种方法可以包括在微机械装置的至少一部分上形成包括铝氧化物的层,并且通过将材料粘合到该层的表面羟基上来涂覆该层。 在另一方面,一种方法可以包括将微机械装置引入原子层沉积室,并且通过使用原子层沉积将材料引入空隙中,基本上填充微机械装置的纳米尺寸的空隙。 在另一方面,一种方法可以包括将烷基氨基硅烷引入到具有表面羟基的微机械装置中,并且通过使烷基氨基硅烷与表面羟基反应将硅烷键合到微机械装置。

    Dry etch release of MEMS structures
    29.
    发明授权
    Dry etch release of MEMS structures 失效
    MEMS结构的干蚀刻释放

    公开(公告)号:US06666979B2

    公开(公告)日:2003-12-23

    申请号:US10046593

    申请日:2001-10-29

    Abstract: The present invention pertains to a method of fabricating a surface within a MEM which is free moving in response to stimulation. The free moving surface is fabricated in a series of steps which includes a release method, where release is accomplished by a plasmaless etching of a sacrificial layer material. An etch step is followed by a cleaning step in which by-products from the etch step are removed along with other contaminants which may lead to stiction. There are a series of etch and then clean steps so that a number of “cycles” of these steps are performed. Between each etch step and each clean step, the process chamber pressure is typically abruptly lowered, to create turbulence and aid in the removal of particulates which are evacuated from the structure surface and the process chamber by the pumping action during lowering of the chamber pressure. The final etch/clean cycle may be followed by a surface passivation step in which cleaned surfaces are passivated and/or coated.

    Abstract translation: 本发明涉及制造响应于刺激而自由移动的MEM内的表面的方法。 自由移动表面是在一系列步骤中制造的,其包括释放方法,其中通过牺牲层材料的无质子蚀刻来实现释放。 蚀刻步骤之后是清洁步骤,其中来自蚀刻步骤的副产物与可能导致静电的其它污染物一起被去除。 存在一系列蚀刻然后清洁步骤,使得执行这些步骤的许多“循环”。 在每个蚀刻步骤和每个清洁步骤之间,处理室压力通常突然降低,以产生湍流,并且有助于通过在降低腔室压力期间的泵送作用从结构表面和处理室排出的微粒去除。 最终的蚀刻/清洁循环之后可以是表面钝化步骤,其中清洁的表面被钝化和/或涂覆。

    NONSTICK LAYER FOR A MICROMECHANICAL COMPONENT
    30.
    发明申请
    NONSTICK LAYER FOR A MICROMECHANICAL COMPONENT 有权
    用于微机电组件的非磁性层

    公开(公告)号:US20030139040A1

    公开(公告)日:2003-07-24

    申请号:US09445374

    申请日:2000-03-02

    Abstract: The invention proposes a method for manufacturing micromechanical components, and a micromechanical component, in which a movable element (4) is produced on a sacrificial layer (2). In a subsequent step the sacrificial layer (2) beneath the movable element (4) is removed so that the movable element (4) becomes movable. After removal of the sacrificial layer (2), a protective layer (7) is deposited on a surface of the movable element (4). Silicon oxide and/or silicon nitride is used for the protective layer (7).

    Abstract translation: 本发明提出了一种用于制造微机械部件的方法,以及微机械部件,其中在牺牲层(2)上制造可移动元件(4)。 在随后的步骤中,去除可移动元件(4)下面的牺牲层(2),使得可移动元件(4)变得可移动。 在去除牺牲层(2)之后,在可移动元件(4)的表面上沉积保护层(7)。 氧化硅和/或氮化硅用于保护层(7)。

Patent Agency Ranking