Abstract:
A non-contact sensor system controls movement of a door moving in a first direction by actuation of a device. The system includes a transmitter extending a predetermined distance beyond a leading edge of the door at a first door end for transmitting a signal toward a second door end. The transmitter is attached to the door by a first movable member which is capable of engaging a surface when the door closes and moving to a retracted position. The sensor system further includes a receiver extending a predetermined distance beyond the leading edge of the door at the second end in alignment with the transmitter for detecting the signal, and for generating an output signal when the signal is blocked. The receiver is attached to the door by a second movable member which is capable of engaging the surface when the door closes and moving to the retracted position.
Abstract:
A device for suspending and moving a door leaf perpendicular and parallel to a wall. The device comprising a first set of rails extending in a direction perpendicular to the wall, a second set of rails extending in a direction parallel to the wall and an elongated member which extends both parallel to and perpendicular to the wall. The door leaf is slidably mounted on the first set of rails and the first set of rails is slidably mounted on the second set of rails. The door leaf includes a motor which operatively engages the elongated member to move the door leaf perpendicular to the wall and parallel to the wall to open and close an opening in the wall.
Abstract:
The invention relates to a Bowden tube window winder with compensation for cable length, which also compensates using simple means for a comparatively high level of cable elongation without excessive twisting of the cable loop. Said Bowden tube window winder is characterised in that a common locking member (10) is associated with the cable sockets and links the force of the two cable sockets (110) with the result that a movement to compensate for play of at least one cable socket can only occur when both cable sockets are substantially unloaded.
Abstract:
A powered sliding-door system of an automobile with a sliding-door drive device A and an automatic door closer B. The sliding-door drive device A has a box-like case body 1 opening downward, a case cover 2 covering the opening of the case body 1. A pair of guide pulleys are rotatably supported by axes, and each axis stands on the front end and the rear end of the case in slanting posture. A loop of cable is arranged between the pair of guide pulleys so that a working side is arranged outside of the case body and a return side is arranged in the case body. The loop of cable is driven by an motor driven actuator 12.
Abstract:
The invention relates to a cable-tensioning device associated with a rail (3) having at its ends (4, 5) two points for returning at least one cable (8), characterized in that one (4) of the said ends of the rail includes: a rotary cam (12); a cam-support element (7); a spring (13) coaxial with the cam (12) and having two angularly offset radial tabs (32, 33), a first tab (33) bearing on a stop (19) formed on the support element (7), and the second tab (32) extending inside the cam (12) and being designed to slide over a non-return means (20) arranged on the support element (7) after the cam has rotated through a first travel, this non-return means being shaped to prevent any return of the second tab (32) after the tabs of the spring (13) have become angularly separated by at least the length of the arc between the non-return means (20) and the stop (19), the cable (8) being engaged in grooves (30, 31) formed at the periphery of the cam. This invention has application to motor vehicle door window lifters.
Abstract:
An automatic door opening safety system particularly for use with garage doors is provided. The garage door includes a leading edge that moves from the open position, where the leading edge defines the top of the opening and a closed position, where the leading edge contacts the ground. A controller is provided for controlling movement of the door. An activation member provides an input to the controller to initiate movement of the door. A non-contact detector detects whether an obstruction is in the path of the door. The non-contact detector is positioned in front of the leading edge of the door, such that obstructions are detected at a predetermined distance in front of the leading edge of said door.
Abstract:
A mechanism for automatically regulating tension of wires employed in a window regulator comprising a drum being provided for rotational movement within said housing, and having a first side surface provided with a first ratchet teeth, a second side surface provided with a first engaging portion for engaging a first wire end, and a peripheral surface as winding surface; a ratchet plate being adjacent to said drum coaxially, and having a surface provided with a second ratchet teeth engaging said first ratchet teeth and a second engaging portion engaging a second wire end; a spiral spring having one end engaged with said ratchet plate and having the other end engaged with said housing, and urging said ratchet plate is such direction that said first ratchet teeth and said second ratchet teeth are moved idly; an elastic member axially urging said drum toward said ratchet plate; and a shaft for operating said drum to rotate by means of engaging with said drum. The mechanism can employ a spiral spring having a larger diameter, and therefore, functions of regulating tension of wires and of balancing the force for raising a window glass with the force for lowering the window glass operate smoothly.
Abstract:
A mechanism for automatically regulating tension of wires employed in a window regulator comprising a drum being provided for rotational movement within said housing, and having a first side surface provided with a first ratchet teeth, a second side surface provided with a first engaging portion for engaging a first wire end, and a peripheral surface as winding surface; a ratchet plate being adjacent to said drum coaxially, and having a surface provided with a second ratchet teeth engaging said first ratchet teeth and a second engaging portion engaging a second wire end; a spiral spring having one end engaged with said ratchet plate and having the other end engaged with said housing, and urging said ratchet plate in such direction that said first ratchet teeth and said second ratchet teeth are moved idly; an elastic member axially urging said drum toward said ratchet plate; and a shaft for operating said drum to rotate by means of engaging with said drum. The mechanism of the present invention can employ a spiral spring having a larger diameter, and therefore, functions of regulating tension of wires and of balancing the force for raising a window glass with the force for lowering the window glass operate smoothly.
Abstract:
A wire-driving device for a window regulator comprising a first pulley secured to a shaft supported rotatably to a casing, a second pulley secured to the shaft so as to be rotatable and axially movable along the shaft, and a wire of which both end portions are wound round said first pulley and second pulley respectively in the opposite direction to each other, the wire being capable to transmit power when the shaft is rotated, and ratchet teeth being provided on each of facing side surfaces of the pulleys, whereby elongation of the wire is automatically absorbed when the shaft is rotated to wind and unwind the wire round the pulleys.
Abstract:
A remotely controlled gate opener for use with a pivotable fence gate is characterized by a closed loop drive chain which is mounted around a set of three triangularly positioned fixed sprockets including a motorized drive sprocket and two positioning sprockets. The gate opener is mounted adjacent the gate post supporting the gate and the gate is attached to the drive chain at a point between the positioning sprockets such that the drive chain, when propelled by the motor, acts to pivot the gate. The preferred embodiment includes a radio controlled motor controller for remote control of the gate opener.