Abstract:
A locking device for a sliding door or a swing and sliding door having a door leaf, the lock device comprising a drive train including at least one motor, a drive transmission and a drive spindle. The locking device also comprises a locking transmission and a torque dividing arrangement.
Abstract:
A drive arrangement for the motorized movement of a functional element in a motor vehicle. An electric drive motor moves the functional element in two directions via a first drive train and a second drive train. The drive force is transmitted simultaneously via the two drive trains in at least one of the two directions of movement of the functional element. One of the two drive trains comprises cable-operated speed transforming transmission with a drive cable which is used to transmit drive force while the other of the two drive trains is a cableless drive train. A differential with two outputs can optionally be connected downstream from the drive motor with the drive trains then extending from the outputs of the differential.
Abstract:
A drive unit is provided for driving a liftgate of a motor vehicle between closed and open positions. The drive unit includes an outer tube having an end configured to couple the drive unit to one of the liftgate or the motor vehicle. The drive unit also includes an inner tube having an end configured to couple the drive unit to the other of the liftgate or the motor vehicle. The inner tube is telescopically engaged with the outer tube. The inner tube is movable between a retracted position and an extended position relative to the outer tube. An actuator is operative for actuating the inner tube relative to the outer tube between the retracted position and the extended position and causing movement of the liftgate between closed and open positions, respectively. The motor drive is housed within the outer tube. A biasing member is connected between the outer tube and the inner tube. The biasing member biases the inner tube relative to the outer tube and assists actuation of the inner tube toward the extended position.
Abstract:
An electromechanical strut is provided for moving a pivotal lift gate between an open position and a closed position relative to a motor vehicle body. The electromechanical strut includes a housing connected to one of the lift gate and the motor vehicle body. An extensible shaft is slidably mounted to the housing. The extensible shaft is connected to the other of the lift gate and the motor vehicle body. A drive mechanism includes a rotatable power screw. The drive mechanism converts rotary motion of the power screw into linear motion of the extensible shaft to move the extensible shaft between a retracted position corresponding to the closed position of the lift gate and an extended position corresponding to the open position of the lift gate. A power spring includes one end connected to the extensible shaft and another end connected to the housing for providing a mechanical counterbalance to the weight of the lift gate.
Abstract:
A preassembled drive unit for an adjustable functional element in a motor vehicle has a drive motor (1) and a braking device (2). A drive connection (3) is provided for producing the driving force or driving torque of the drive motor (1) and a brake connection (4) is provided for producing the braking force or braking torque of the braking means (2).
Abstract:
Disclosed is a folder driving device for a portable device. The device comprises first and second shaft support parts formed at one end of a body element of the portable device, wherein said first and second shaft support parts are spaced apart from each other by a predetermined distance and opened at their respective ends facing to each other; a cylindrical hinge housing connected to a folder of the portable device, wherein said cylindrical hinge housing is positioned between the first and second shaft support parts and opened at both ends thereof; a hinge cam coupled to the second shaft support part in the hinge housing in a manner such that it is prevented from being rotated and allowed to be moved in an axial direction; a hinge shaft placed in the hinge housing and cooperating with the hinge cam to determine folder opening and closing positions; an elastic member placed between the hinge cam and the hinge housing to apply elastic force to the hinge cam for biasing the hinge cam against the hinge shaft; and driving means for transmitting rotation force to the hinge shaft.
Abstract:
A drive arrangement that is an economical structure that makes optimum use of existing installation space is achieved by a drive arrangement, for actuating the hatch of a motor vehicle that is coupled to the body of the motor vehicle to pivot around a hatch axis opening and closing a hatch opening of the body, of the type having a drive motor and a gearing connected on an output side of the drive motor for producing drive motions and movement of the hatch between an open position and a closed position, the gearing having an actuating element which is pivotable around axis of the actuating element and having a push rod which is coupled to the actuating element with an offset respect to the axis of the actuating element, in which the actuating element axis is arranged essentially perpendicular to the hatch axis.
Abstract:
A sliding wall-mounted interior door system that includes a telescoping door actuating mechanism that is attached to the upper portion of the door, and a roller assembly that extends horizontally from the wall and engages a track in the lower portion of the door. The door actuating system is designed so that the movement of one of the door panels simultaneously moves the other door panel in the opposite direction. The actuating mechanism is designed so that a gearing assembly within the actuating mechanism moves laterally when the door system is moved between the open and closed positions.
Abstract:
The invention relates to a driving unit especially adapted to adjusting devices for motor vehicles and comprising an electric motor (1), a gear box (2) and an electronic control device (15). The invention is characterized in that at least one element of the electric motor (1), for example, at the driving shaft (9), the magnetic short-circuit (5) or the motor side crankcase casing (11), additionally provides a gear box (2) mechanical feature and/or in that a mechanical member, for example, a gear box (12) side crankcase casing, provides an electric motor (1) or electronic control device (15) feature.
Abstract:
The invention relates to a drive for adjustment devices in motor vehicles, especially for a window lift. Said drive comprises a motor and a toothed gearing coupled with said motor, said toothed gearing being mounted in an at least two-piece housing and being driven by an internal gear. According to the invention on at least one housing part and bears the drive element.