Abstract:
The present invention relates to a method for generating a security identifier for a control unit (10) of a battery system (100), comprising the steps of supplying an operation voltage to the control unit (10), outputting calibration data from a non-volatile memory element (15a) of the control unit (10), and generating a security identifier from the calibration data using a security algorithm. Therein, the calibration data is based on at least one testing process performed on the control unit (10) and is required for a faultless operation of the control unit (10). Further, according to a method for generating an activation key for a control unit (10) of a battery system (100) an activation key is generated based on such security identifier and output from the control unit (10). The invention further relates to an activation method for such control unit (10), wherein a control unit (10) is activated in response to the validation of such security identifier. The present invention further relates to a control unit (10) for performing such methods and further relates to the use of calibration data for generating a security identifier.
Abstract:
A soda-lime-silica glass container and related methods of manufacturing. A black-strikable glass composition having a base glass portion and a latent colorant portion is prepared. The base glass portion includes soda-lime-silica glass materials and one or more blue colorant materials, and the latent colorant portion includes cuprous oxide (Cu2O), stannous oxide (SnO), bismuth oxide (Bi2O3), and carbon (C). Glass containers may be formed from the black-strikable glass composition, and these glass containers may be heated to a temperature greater than 600 degrees Celsius to strike black therein. The glass containers formed from the black-strikable glass composition may be inspected—before or after striking—by infrared inspection equipment.
Abstract:
A lens allows infrared light to pass therethrough. An infrared sensor includes infrared detection elements arranged in two or more columns. The infrared sensor is rotated around a scan rotation axis that passes through part of the lens to scan a detection range, and outputs an output signal indicating a thermal image of the detection range. At least two infrared detection elements in the infrared sensor are located at positions displaced from each other with respect to the scan rotation axis. Among the infrared detection elements, the number of first infrared detection elements having a smaller half-width of a point spread function in a scan direction than that in the direction of the scan rotation axis is larger than the number of second infrared detection elements having a larger half-width of a point spread function in the scan direction than that in the direction of the scan rotation axis.
Abstract:
A radiation detector includes a substrate and a membrane suspended above the substrate by spacers, wherein the spacers electrically contact a radiation sensor formed in the membrane and thermally insulate the membrane from the substrate.
Abstract:
A sensor assembly for a flame sensor apparatus includes a photodiode that generates a current. The sensor assembly includes a seal assembly supporting the photodiode. The seal assembly includes an inner conductor defining an inner conductor end. The inner conductor includes an inner conductor surface disposed at the inner conductor end. The photodiode is attached to the inner conductor end of the inner conductor and to a middle conductor end of a middle conductor. The photodiode is electrically connected to the inner conductor surface. The seal assembly is triaxial so as to protect the current generated by the photodiode. The seal assembly withstands temperatures up to or greater than about 325° C. The seal assembly forms a hermetic barrier that, with the photodiode supported within a sealed volume, limits the passage of materials/gases through the seal assembly.
Abstract:
A dual-band infrared detector is provided. The dual-band infrared detector includes a first absorption layer, a barrier layer coupled to the first absorption layer, and a second absorption layer coupled to the barrier layer. The first absorption layer is sensitive to only a first infrared wavelength band and the second absorption layer is sensitive to only a second infrared wavelength band that is different from the first infrared wavelength band. The dual-band infrared detector is capable of detecting the first wavelength band and the second wavelength band by applying a first bias voltage of a first polarity to the first absorption layer and by applying a second bias voltage of a second polarity that is opposite the first polarity to the second absorption layer, wherein the first bias voltage and the second bias voltage each have a magnitude of less than about 500 mV.
Abstract:
A photoluminescent temperature sensing device and method utilizing a semi-conductor optical device adapted to operate as both a light-emitting device and a light detection device. The optical device emits a pulse of incident light, producing photoluminescent light that is received at the optical device. Signal information associated with a temperature-dependent characteristic of the photoluminescent light is created and temperature information if obtained from the signal information.
Abstract:
The present invention relates to a bolometer (10) comprising a substrate (12), a first membrane (16) formed by removing a first sacrificial layer (14) on the substrate (12), the first membrane (16) comprising a measuring element (18) for measuring an amount of incident electromagnetic radiation (R), a second membrane (22) formed by removing a second sacrificial layer (20) on the first membrane (16), the second membrane (22) enclosing the first membrane (16), a first cavity (24) formed between the substrate (12) and the first membrane (16), and a second cavity (26) formed between the first membrane (16) and the second membrane (22). The present invention further relates to a method of manufacturing a bolometer, as well as a thermographic image sensor and medical device.