Abstract:
The thinning of a semiconductor substrate of an integrated circuit from a back face is detected using the measurement of a physical quantity representative of the resistance between the ends of two electrically-conducting contacts situated at an interface between an insulating region and an underlying substrate region. The two electrically-conducting contacts extend through the insulating region to reach the underlying substrate region.
Abstract:
An electronic device with data protection features in case of unauthorized disassembly includes top cover, bottom cover, a printed circuit board (PCB) fixed on the top cover, and a plate coupled to the bottom cover. The PCB includes a plurality of terminal couplers and a protruding portion. The plate includes a plurality of terminal grooves and a latching member. At least two signal terminals are correspondingly received in at least two of the plurality of terminal grooves. When the signal terminals are electrically connected to the terminal couplers, a first relation signal, which is dependent upon the electrical paths defined by the signal terminals in the terminal grooves, is generated to enable the electronic device. When the signal terminals are not connected to the original terminal couplers, a second and different relation signal is generated by the PCB to disable the electronic device.
Abstract:
Methods, systems, and computer program products are provided for protecting data stored on a device, even when the device is powered off. The device includes a first operating system and a security module. The first operating system (OS) is the main OS for the device, managing computer resources when the device is powered up in an “on” mode. The security module is separate from the main OS, and is configured to monitor for undesired tampering of the device. The security module is implemented in hardware that functions even when the device is turned off, and thus can protect data against unauthorized access even when the device is off. The security module may be implemented in the form of a circuit, a system-on-chip (SOC), a secondary OS that executes in a processor circuit separate from the processor hardware that operates the main OS, and/or in another manner.
Abstract:
Tamper-respondent assemblies, electronic assembly packages, and methods of fabrication are provided which include multiple, discrete tamper-respondent sensors that overlap, at least in part, and facilitate defining a secure volume about one or more electronic components to be protected, such as an electronic assembly. The tamper-respondent sensors include a first tamper-respondent sensor and a second tamper-respondent sensor, which may be similarly constructed or differently constructed. In certain embodiments, the tamper-respondent sensors wrap, at least in part, over an electronic enclosure, and in other embodiments, the tamper-respondent sensors cover, at least in part, an inner surface of an electronic enclosure to facilitate defining a secure volume in association with a multilayer circuit board to which the electronic enclosure is mounted.
Abstract:
A deformable tamper sensor and tamper resistant electronic system is operable to detect opening of an enclosure and perform actions responsive to the detection. Movable elements within the tamper sensor are held in position when the sensor is compressed and define a multi-bit sensor value. Transitioning the sensor from a compressed to a non-compressed state non-destructively provides a new sensor value through movement of one or more elements.
Abstract:
Disclosed is a mobile terminal. The mobile terminal according to the present inventive concept, comprises: a case; a printed circuit board (PCB), which is arranged inside of the case, and on the surface of which is a temper detect pattern comprising first and second contact-type conductive patterns that are arranged adjacent to each other and a non-contact-type conductive pattern that is arranged apart from the first and second contact-type conductive patterns are provided; a detection circuit, which is electrically connected to the tamper detect pattern, for detecting whether the tamper detection pattern is conductive; and a pattern conduction module for controlling so that the first and second contact-type conductive patterns are conductive when the case is assembled, and the conduction of the first and second contact-type conductive patterns is released when the case is disassembled.
Abstract:
A system includes a tamper detector that includes a linear feedback shift register (LFSR) for generating pseudorandom coded detection signals as a function of seed values and a generator polynomial. The generator polynomial is loaded from a controller to the LFSR via software, and the seed values are directly loaded from a hardware-based random number generator to the LFSR. The tamper detector has output and input elements for connection to ends of a tamper detection circuit, wherein the detection circuit is linked with a physical closure surrounding an electronic circuit. The detection signals are applied to the output element and incoming signals are received from the tamper detection circuit at a comparator via the input element. Comparison of the incoming signals with the coded detection signals is performed to detect interference with the detection circuit in an attempt to tamper with the electronic circuit.
Abstract:
A vital product data (VPD) system is connected to a network, allowing the VPD system to be accessed for inquiries about VPD. The VPD system includes a baseboard management controller (BMC), a VPD cache, a platform initialization system and a tamper detection switch. The BMC communicates with the tamper detection switch and sets a VPD flag to false when tampering is detected. Queries to the BMC through the network for VPD are then held pending and the VPD cache refreshed with a no-boot power on, using the platform initialization system to collect the new VPD capturing the nature of any modifications after tampering.
Abstract:
A ROM circuit includes a first N channel transistor having an output and having device geometry and device characteristics adapted to bias the output at a predetermined level when a P channel circuit is connected to the first N channel transistor; a pass transistor connected between the output and a data bus, the pass transistor connected to a word line, the word line adapted to turn ON the pass transistor when the word line is asserted; and the P channel circuit connected to the data bus and adapted to provide leakage current to charge a gate in the first N channel transistor when pass transistor is turned ON.
Abstract:
A security wrap (20) for protecting an electronic component (16) having a bonding surface includes a substrate (22) having a first side and a second side opposite to each other. A first security screen (26) is disposed over the first side of the substrate (22) and includes a first pair of screen terminals (48) and a first conductive track (46) between the first pair of screen terminals (48). A second security screen (26) includes a second pair of screen terminals (48) and a second conductive track (46) between the second pair of screen terminals (48) and overlaying the first conductive track (46) on the first security screen (26). A layer of adhesive (30) is over a side of the second security screen (26) remote from the substrate (22) and bonds the second security screen (22) to the bonding surface of the electronic component (16).