摘要:
A magnetoresistive (MR) sensor including a synthetic antiferromagnetic (SAF) structure that is magnetically coupled to a side shield element. The SAF structure includes at least one magnetic amorphous layer that is an alloy of a ferromagnetic material and a refractory material. The amorphous magnetic layer may be in contact with a non-magnetic layer and antiferromagnetically coupled to a layer in contact with an opposite surface of the non-magnetic layer.
摘要:
Implementations disclosed herein provide for a magnetoresistive (MR) sensor including a synthetic antiferromagnetic (SAF) structure that is magnetically coupled a side shield element. The SAF structure includes at least one magnetic amorphous layer that is an alloy of a ferromagnetic material and a refractory material. The amorphous magnetic layer may be in contact with a non-magnetic layer and antiferromagnetically coupled to a layer in contact with an opposite surface of the non-magnetic layer.
摘要:
In some embodiments, a magnetic reader comprises first and second shields extending from an air bearing surface (ABS), a magnetoresistive stack is located between the first and second shields, and a flux guide is separated from the magnetoresistive stack while connecting the first and second shields. The flux guide magnetically couples the distal end of the magnetoresistive stack to the first shield.
摘要:
A current perpendicular to plane (CPP) magnetoresistive sensor having a front edge that is recessed from the air bearing surface (ABS). The sensor includes a pinned layer structure a free layer structure and a spacer layer sandwiched between the free layer and the pinned layer. The free layer is an AP coupled structure that includes a first magnetic layer F1 a second magnetic layer F2 and a coupling layer sandwiched between F1 and F2. The first magnetic layer F1 extends to the ABS while the other sensor layers terminate at the recessed front edge. In this way, the F1 layer acts as a flux guide that reacts to a magnetic field from a magnetic medium. The AP coupled structure of the free layer allows each magnetic layer F1 and F2 to be thicker than would be possible in a conventional single layer free layer, which increases the GMR effect of the sensor and increases the effectiveness of the flux guide (F2).
摘要:
The invention provides a magnetoresistive device with the CPP (current perpendicular to plane) structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, with a sense current applied in the stacking direction, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer near a medium opposite plane and a magnetization direction control area that extends further rearward (toward the depth side) from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer in such a way that the magnetizations of the said first and second ferromagnetic layers are antiparallel with each other along the width direction axis; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetizations of said first and second ferromagnetic layers intersect in substantially orthogonal directions. It is thus possible to obtain a magnetoresistive device that, while the magnetization directions of two magnetic layers (free layers) stay stabilized, can have high reliability, and can improve linear recording densities by the adoption of a structure capable of narrowing the read gap (the gap between the upper and lower shields) thereby meeting recent demands for ultra-high recording densities.
摘要:
A soft magnetic layer is made of nickel iron alloy containing crystals of the face-centered cubic lattice and crystals of the body-centered cubic lattice. The face-centered cubic lattice serves to establish a soft magnetic property in the nickel iron alloy. The body-centered cubic lattice contributes to reduction in the electric resistance of the magnetoresistive film as well as to improvement of the magnetoresistive ratio of the magnetoresistive film. Even if the magnetoresistive film is further reduced in size, the magnetoresistive film can sufficiently be prevented from suffering from an increase in the temperature. Even if a sensing current of a larger current value is supplied to the magnetoresistive film, the magnetoresistive film is reliably prevented from deterioration in the characteristics as well as destruction.
摘要:
A giant magneto-resistive (GMR) transducer for reading data signals magnetically recorded on tape includes a GMR sensor and a separation structure formed on a front edge of the GMR sensor. The GMR sensor reads data signals magnetically recorded on a tape located at a head-tape interface. The separation structure physically separates the GMR sensor from the head-tape interface. The separation structure includes at least one film formed of at least one of non-magnetic and ferromagnetic materials such that the separation structure isolates the GMR sensor from physical contact with the tape at the head-tape interface while maintaining the ability of the GMR sensor to read data signals magnetically recorded on the tape even though the GMR sensor is physically separated from the tape at the head-tape interface. The separation structure may include an under-layer film and an isolation film. The GMR transducer is fabricated by a series of fabrication steps.
摘要:
A magnetic head using magnetoresistive effect comprising a magnetic sensing portion formed of a magnetoresistive effect element. The magnetic sensing portion includes a lamination layer structure portion which includes at least a free layer, a fixed layer made of a ferromagnetic material, an antiferromagnetic layer and a spacer layer interposed between the free layer and the fixed layer are laminated with each other. The lamination layer structure portion includes a magnetic flux introducing layer. The lamination layer structure portion has at its lamination layer direction opposing side surfaces formed of one flat surface or continuous one curved surface over at least the free layer, the spacer layer and the fixed layer. A hard magnetic layer for maintaining a magnetic stability of the free layer is disposed in direct contact with the opposing surfaces or through an insulating layer.
摘要:
A method for making a tunnel valve head with a flux guide. The tunnel valve sensor is created by forming a tunnel valve at a first shield layer. The tunnel valve includes a free layer distal to the first shield layer, a first insulation layer deposited over the first shield layer and around the tunnel valve, a flux guide formed over the first insulation layer and coupling to the tunnel valve at the free layer, a second insulation layer formed over the flux guide and a second shield layer formed over the second insulation layer. The flux guide and the free layer are physically isolated by the first and second insulation layers to prevent current shunts therefrom. The structure achieves physical connection between the flux guide and the free layer and insulates the flux guide from the shields.
摘要:
A flux guide protected magnetoresistive sensor in a tape drive read/write head is presented. The magnetoresistive sensor has a tape bearing surface, and includes a magnetoresistive sensing element and a flux guide disposed on a surface of the magnetoresistive sensing element to form a portion of the tape bearing surface.