Abstract:
A method of manufacturing a phosphor panel includes: forming a phosphor layer having a plurality of phosphor particles on an exit window; forming an organic film on the phosphor layer; forming a metal reflection film on the organic film; forming an oxide film on the metal reflection film; removing the organic film by firing; and forming an oxide film integrally covering a surface of the metal reflection film and surfaces of the phosphor particles by atomic layer deposition.
Abstract:
The objective of the present invention is to propose a charged particle beam device with which an imaging optical system and an irradiation optical system can be adjusted with high precision. In order to achieve this objective, provided is a charged particle beam device comprising: a first charged particle column which serves as an irradiation optical signal; a deflector that deflects charged particles which have passed through the inside of the first charged particle column toward an object; and a second charged particle column which serves as an imaging optical system. The charged particle beam device is provided with: a light source that emits light toward the object; and a control device that obtains, on the basis of detection charged particles generated according to irradiation of light emitted from the light source, a plurality of deflection signals which maintain a certain deflection state, and that selects or calculates, from the plurality of deflection signals or from relationship information produced from the plurality of deflection signals, a deflection signal that satisfies a predetermined condition.
Abstract:
An electron spectrometer includes: an energy analyzer section that energy-analyzes electrons emitted from a specimen; a micro-channel plate that amplifies the electrons analyzed by the energy analyzer section; a fluorescent screen that converts the electrons amplified by the micro-channel plate into light; a camera that photographs the fluorescent screen; and an effective range calculation section that calculates an effective range of the fluorescent screen within a camera image photographed by the camera, the effective range calculation section performing a process that acquires a plurality of the camera images photographed while causing the energy analyzer section to analyze the electrons with a different center energy, a process that converts the plurality of camera images respectively into a plurality of spectra, and a process that calculates the effective range of the fluorescent screen within the camera image based on the plurality of spectra.
Abstract:
A particle beam detector is disclosed. The particle beam detector can include a particle beam receiving portion configured to convert particle beam energy to heat, and a plurality of temperature measuring devices disposed about the particle beam receiving portion. A location of a particle beam on the particle beam receiving portion can be determined by a temperature difference between at least two of the plurality of temperature measuring devices.