Abstract:
To provide a sputtering target for preparing a recordable optical recording medium characterized by comprising Bi and B and a manufacturing method thereof, a recordable high density optical recording medium using the sputtering target, and a sputtering target which is capable of improving a speed of the film formation for the improvement of productivity, which has a high intensity at the time of the film formation and which has a heightened packing density.
Abstract:
A substrate stage that is arranged in a vacuum chamber and that has a substrate mounting surface on which a substrate is mounted, including a first magnetic field applying unit that applies a magnetic field to the substrate, in which the internal magnetization direction of the first magnetic field applying unit and the thickness direction of the substrate match.
Abstract:
A method for connecting a magnetic substance target to a backing plate with less variation in plate thickness, characterized in having the steps of connecting the magnetic substance target to an aluminum plate beforehand while maintaining the flatness, connecting the magnetic substance target connected to the aluminum plate to the backing plate while maintaining the flatness, and grinding out the aluminum plate, whereby the flatness of the magnetic substance target can be maintained until the magnetic substance target is connected to the backing plate by a relatively simple operation.
Abstract:
A sputtering target is substantially made of ruthenium (Ru), has a sintered density of 95% or more, and contains oxygen (O) and carbon (C) each in an amount of 200 ppm or less.
Abstract:
A capacitive plasma source for iPVD is immersed in a strong local magnetic field, and maybe a drop-in replacement for an inductively coupled plasma (ICP) source for iPVD. The source includes an annular electrode having a magnet pack behind it that includes a surface magnet generally parallel to the electrode surface with a magnetic field extending radially over the electrode surface. Side magnets, such as inner and outer annular ring magnets, have polar axes that intersect the electrode with poles closest to the electrode of the same polarity as the adjacent pole of the surface magnet. A ferromagnetic back plate or back magnet interconnects the back poles of the side magnets. A ferromagnetic shield behind the magnet pack confines the field away from the iPVD material source.
Abstract:
The invention includes PVD targets having non-sputtered regions (such as, for example, sidewalls), and particle-trapping features formed along the non-sputtered regions. In particular aspects, the particle-trapping features can comprise a pattern of bent projections forming receptacles, and can comprise microstructures on the bent projections. The targets can be part of target/backing plate constructions, or can be monolithic. The invention also includes methods of forming particle-trapping features along sidewalls of a sputtering target or along sidewalls of a target/backing plate construction. The features can be formed by initially forming a pattern of projections along a sidewall. The projections can be bent and subsequently exposed to particles to form microstructures on the bent projections.
Abstract:
An apparatus and method for fabricating a carbon thin film are disclosed in the present invention. The apparatus includes a vacuum chamber having a substrate mounted therein, a sputter target inside the vacuum chamber facing into the substrate, a cesium supplying unit inside the vacuum chamber in a shape of a shield to a circumference of the target and supplying cesium vapor onto a surface of the sputter target through a plurality of openings, and a heating wire surrounding the cesium supplying unit and maintaining the cesium supplying unit at a constant pressure.
Abstract:
Disclosed is a facing-targets-type sputtering apparatus and method capable of forming a metal film under the conditions of low gas pressure and low discharge voltage. An opening is formed in each of two facing side faces of a vacuum chamber vessel or in each of two facing side faces of a box-type discharge unit attached to an opening portion of a vacuum chamber vessel. The two openings are covered by a pair of cooling blocks. Each cooling block holds a target facing a discharge space. Magnetic field generation means is disposed so as to surround each target and operative to generate a magnetic field that surrounds a discharge space provided between the paired targets. Electron reflection means is disposed above the exposed surface of each target along the periphery of the target. A DC power and a high-frequency power are applied between the vacuum chamber vessel and the targets.
Abstract:
A sputtering chamber has a target that moves with an orbital motion relative to an ion beam. An X-Y assembly allows for target movement in both the horizontal and vertical directions. The X-Y assembly has a base plate, an intermediate plate, and a target mounting plate that attaches to the target. The plates are connected together by bearing blocks that slide along rails in the X and Y directions. A rotating shaft has gears that rotate a center shaft through the base and intermediate plates. The rotating center shaft has an arm on its end that attaches to the target mounting plate. The arm produces an orbital movement of the target. Rather than simply rotating the target around the center shaft, the center of the target orbits around the center of the center shaft. Ion-beam wear is spread across the target surface, extending target life and improving deposition uniformity.
Abstract:
In a coating apparatus, a sputter cathode (1) has, directly side by side, two electrodes (2, 3) connected in common to a high-frequency generator and having each a target (9, 10). The targets (9, 10) of both electrodes (2, 3) abut one another each with a straight edge (11, 12). A dark space shield surrounds both electrodes (2, 3) and targets (9, 10) together.