Abstract:
A low-pressure gas discharge lamp provided with a gas discharge vessel containing a mercury-free gas filling with an indium compound in an amount of about 1 to 10 microgram per cubic centimeter and a partial pressure in the range from 1.0 to 30 micro bar, and a buffer gas for emitting radiation in a continuous spectrum in the visible and near UVA regions of the electromagnetic spectrum, which low-pressure gas discharge lamp is also provided with electrodes and a ballast for controlling the ignition and operation of the lamp.
Abstract:
The gas discharge tube in accordance with the present invention comprises at least two electrically conductive aperture members disposed within a thermoelectron transmission path between a cathode and an anode, and an insulator for electrically insulating the electrically conductive aperture members from each other, thereby being able to emit light with a high luminance. Its startability at the time of emitting light can be enhanced in particular when the aperture area of the electrically conductive aperture member on the downstream side in the thermoelectron transmission path is set favorably.
Abstract:
In a gas discharge tube 1 of the present invention, a focusing electrode portion 14 and a discharge limiting portion 30 are electrically insulated, and the discharge limiting portion 30 comprises a discharge limiting opening 31 which opposes an arc ball shaping concave portion 16. Thus the formation of a discharge path from a cathode portion 20 to the concave portion 16 is ensured and a starting discharge can be reliably generated. Further, by means of the discharge limiting opening 31 which opposes the concave portion 16, an arc ball S can be continuously maintained in an appropriate shape even when a lamp is illuminated, and thus the arc ball S can be shaped with stability, thereby stabilizing the luminance and light quantity.
Abstract:
A fluorescent lamp (10) with improved life is formed by winding a coil (30) using first, and second mandrels (45, 46), and optionally a third mandrel (70). The coil is wound around the second mandrel to provide a coil density of at least 95%. The coil is able to carry an amount of emitter material of about 0.6-1.6 mg/cm of coil. This has been found to lead to substantially increased lamp life, on both instant and rapid start circuits.
Abstract:
In a gas discharge tube 1 of the present invention, a focusing electrode portion 14 and a discharge limiting portion 30 are electrically insulated, and the discharge limiting portion 30 comprises a discharge limiting opening 31 which opposes an arc ball shaping concave portion 16. Thus the formation of a discharge path from a cathode portion 20 to the concave portion 16 is ensured and a starting discharge can be reliably generated. Further, by means of the discharge limiting opening 31 which opposes the concave portion 16, an arc ball S can be continuously maintained in an appropriate shape even when a lamp is illuminated, and thus the arc ball S can be shaped with stability, thereby stabilizing the luminance and light quantity.
Abstract:
An electrode-to-ballast interconnect is provided in combination with a fluorescent lamp including a discharge tube bent substantially in a plane. The discharge tube is shaped at least in part to define a substantial portion of the boundary of a zone in the plane. The part of the tube defining the boundary includes at least one straight portion. The discharge tube has a symmetry axis in the plane and sealed tube ends provided with electrodes, and the tube ends re-enter said zone. A base housing is laid within said zone and receives the tube ends. The base housing includes a ballast circuit which is located at least partly on a circuit board positioned substantially parallel to the plane. The electrode-to-ballast interconnect comprises electrode-in-leads which are connected to each electrode and embedded in the tube ends. Terminals are anchored in and protruding from the circuit board. The electrode-in-leads are pre-formed to a shape suitable for connecting to the terminals. Means is formed in the circuit board for urging the electrode-in-leads to the terminals during assembly. The electrode-in-leads and the terminals are joined electrically and mechanically. The base housing protrudes at most half of the outer diameter of the discharge tube from the space defined thereby.
Abstract:
A low-pressure gas discharge lamp provided with a gas discharge vessel comprising a gas filling with a copper compound selected from the group formed by the oxides, chalcogenides, hydroxides, hydrides and the metalorganic compounds of copper, and comprising a buffer gas, which low-pressure gas discharge lamp is further provided with electrodes and means for generating and maintaining a low-pressure gas discharge.
Abstract:
An illumination control device for illuminating an light modulation information display device with light includes: at least one illumination device for irradiating light which is generated through discharging; and a driving waveform generation section for controlling the light which is irradiated from the at least one illumination device to the light modulation information display device. The light modulation information display device is operable so as to have a first period and a second period during which an image is displayed. During the first period, the driving waveform generation section applies a first voltage to the at least one illumination device, the first voltage causing the at least one illumination device to be turned entirely-ON. During the second period, the driving waveform generation section applies a second voltage to at least a portion of the at least one illumination device.
Abstract:
A light-transmissive discharge vessel (1) encloses a discharge space (10) which contains an ionizable filling comprising an evaporable component. The low-pressure discharge lamp is also provided with coil for maintaining an electric discharge in the discharge space, and with a carrier (3) with a resilient body (30) and an open holder (31). The resilient body (30) is clamped inside a tube (14) which communicates with the discharge space (10). The holder (31) is clamped inside the resilient body (30). In the absence of the holder (31), the resilient body (30) can be inserted in a released state in the tube (14) with play (x).
Abstract:
A planar fluorescent lamp having a resistive trace and optically transmissive cover electrodes is described. In one embodiment, the lamp includes an insulative lamp body with the transparent cover electrodes supported by the lamp cover. The resistive trace is supported by the base, either as an exterior resistive trace or within the lamp. The resistive trace acts as a heating element by producing heat in response to an electric current passed through the resistive trace. Because the resistive trace is in thermal contact with the lamp body, heat produced by the resistive trace heats the lamp, improving cold starting. The cover electrodes and, in some embodiments, the resistive trace, are used to control electric fields within the lamp body by applying voltage potentials between discrete cover electrodes or between the cover electrodes and the resistive trace. The controllable electric fields improve cold starting and uniformity of light during low light operation. In an alternative embodiment, the lamp includes an insulatively coated metal lamp body with a glass cover soldered thereto. In another alternative embodiment, the lamp includes two lamp covers with a fluorescent material sandwiched therebetween.