摘要:
Provided is a method and system for estimating distortion in a communications channel including an adaptive equalizer. The method includes determining one or more adaptive filter coefficients associated with a signal passed through the equalizer. The method also includes estimating un-equalized channel distortion based upon the determined adaptive filter coefficients.
摘要:
An embodiment of the invention is a technique to equalize received samples. An equalizer to equalize a multidimensional signal transmitted over a communication channel and having a dimensionality of four or higher. The equalizer is adaptively decision directed trained.
摘要:
A 16-State adaptive NPML detector is provided for a tape drive which addresses weaknesses of a conventional fixed, 8-state EPR4 detector. Rather than having a fixed target channel, the detector is programmable to allow a range of target channels and can support “classical” partial response channels such as PR4 or EPR4 by programming predictor or whitening filter coefficients. In one embodiment, two filter coefficients may be set via XREG inputs or dynamically determined through the use of an LMS algorithm allowing the detector to adapt the predictor coefficients as data is being read. Another embodiment provides a detector for an EPR4 target in which the whitening filter has one coefficient. Components of the detection system include the detector itself, an LMS engine, a coefficient engine and a noise predictive or whitening filter. Coefficients from the LMS engine may be loaded or stored dynamically based upon conditions in the tape drive.
摘要:
Provided is a method and system for estimating distortion in a communications channel including an adaptive equalizer. The method includes determining one or more adaptive filter coefficients associated with a signal passed through the equalizer. The method also includes estimating un-equalized channel distortion based upon the determined adaptive filter coefficients.
摘要:
A method and an apparatus for slicing a multilevel analog signal using a two-level slicer having one threshold level to generate an analog error signal. The method may be performed by delaying a received multilevel analog signal in a plurality of serial analog stages (n), further delaying a multilevel analog signal tapped from stage n, combining the further delayed signal from stage n with an analog error signal e(t) to provide an analog weighting function Wn, wherein the combining of the delayed signal from stage n with Wn results in a plurality of signals XnWn, summing the plurality of signals XnWn, slicing a multilevel analog signal resulting from the summing of the plurality of signals XnWn using one threshold level to generate the analog error signal e(t), and combining the delayed signal from stage n with Wn.
摘要:
A receiver (e.g., for a 10G fiber communications link) includes an interleaved ADC coupled to a multi-channel equalizer that can provide different equalization for different ADC channels within the interleaved ADC. That is, the multi-channel equalizer can compensate for channel-dependent impairments. In one approach, the multi-channel equalizer is a feedforward equalizer (FFE) coupled to a Viterbi decoder, for example a sliding block Viterbi decoder (SBVD); and the FFE and/or the channel estimator for the Viterbi decoder are adapted using the LMS algorithm.
摘要:
The present invention uses a novel adaptive soft decision device in order to jointly optimize decision device and DFE operation. The soft decision device receives the input and output samples of the slicer and generates a feedback sample by non-linearly combining them with respect to a single decision reference parameter. Moreover, the soft decision device provides novel error terms used to adapt equalizer coefficients in order to jointly optimize decision device and equalizer coefficients.
摘要:
Sparse channel equalization may be achieved by receiving a signal via a multi-path communication channel. The equalization then continues by extracting sparse information regarding the multiple path communication channel from the signal. Such sparse information generally indicates the position of the signals received via each of the multiple paths. The equalization then continues by estimating a channel response of the multiple path communication channel based on the sparse information. The equalization then continues by generating equalization taps (or coefficients) based on the channel response. The equalization then continues by equalizing the signal based on the equalization taps.
摘要:
A feedforward equalizer for equalizing a sequence of signal samples received by a receiver from a remote transmitter. The feedforward equalizer has a gain and is included in the receiver which includes a timing recovery module for setting a sampling phase and a decoder. The feedforward equalizer comprises a non-adaptive filter and a gain stage. The non-adaptive filter receives the signal samples and produces a filtered signal. The gain stage adjusts the gain of the feedforward equalizer by adjusting the amplitude of the filtered signal. The amplitude of the filtered signal is adjusted so that it fits in the operational range of the decoder. The feedforward equalizer does not affect the sampling phase setting of the timing recovery module of the receiver.