Abstract:
Disclosed is a method of fabricating a rear plate in a plasma display panel enabling to reduce the steps of a process, a process time, and the generation of dust. The present invention includes the steps of forming a complex functional sheet by sheeting a glazing material and a barrier rib material, attaching the complex functional sheet to a substrate, and pressing the complex functional sheet so as to form barrier ribs.
Abstract:
The present invention relates to a plasma display panel, and more particularly, to an electrode structure of a plasma display panel capable of improving brightness and efficiency. According to the present invention, in the plasma display, assuming that a distance from the center of a discharge region between a pair of transparent electrodes to the center of metal electrodes is “d” and a distance between both ends of the pair of the transparent electrodes is “h”, a location on the transparent electrodes of metal electrodes satisfies d
Abstract:
A plasma display panel includes first and second substrates opposing one another. Address electrodes are formed on the first substrate in a first direction. Barrier ribs are mounted between the first and second substrates defining non-discharge regions and discharge cells, and phosphor layers are formed within the discharge cells. Discharge sustain electrodes are formed on the second substrate in a second direction substantially perpendicular to the first direction. The non-discharge regions are formed in areas encompassed by discharge cell abscissas and ordinates that pass through centers of adjacent discharge cells. The discharge sustain electrodes include bus electrodes that extend such that a pair of the bus electrodes is provided for each of the discharge cells, and protrusion electrodes formed extending from each of the bus electrodes such that a pair of opposing protrusion electrodes is formed in each discharge cell. Also, a predetermined angle is formed between proximal ends of the protrusion electrodes and inner surfaces of the barrier ribs opposing the proximal ends.
Abstract:
A display electrode and a dielectric layer are formed on the convex side of a front glass substrate that is convexly curved in profile, whereas address electrodes, a dielectric layer, partition walls and phosphor layers are formed on the convex side of a back glass substrate 15 that convexly curved in profile. Further, a sealing layer containing granular substances in a sealing material is formed in the peripheral portion of the back glass substrate. A front panel and a back panel are stacked so that the panel component parts of the front panel are set opposite to the panel component parts of the back panel. Then the peripheral portions of the panels are pressed against each other into a flat substrate plate as shown by arrows and heated up.
Abstract:
A plasma discharge method and a plasma display using the same. In the method, a sustain discharge uses a facing surfaces discharge and a surface discharge after an address discharge. The discharges occur in separate discharge areas, and priming particles generated by the discharges are exchanged. Thus, the stability and the efficiency of the sustain discharge increase, and a gap for the address discharge decreases to lower a breakdown voltage.
Abstract:
A plasma display panel includes a front substrate and a rear substrate opposing one another; display electrodes formed on the front substrate, a dielectric layer formed on the front substrate covering the display electrodes, barrier ribs formed on the rear substrate and including first barrier rib members formed in a direction orthogonal to the display electrodes, and second barrier rib members formed in a direction parallel to the display electrodes, the first barrier rib members intersecting the second barrier rib members to define discharge cells; phosphor layers formed in the discharge cells, and address electrodes realized through conductive wires and coated with a dielectric material, the address electrodes being formed orthogonal to the display electrodes in the discharge cells. The address electrodes may be mounted on the second barrier rib members orthogonal to the display electrodes in the discharge cells.
Abstract:
A plasma display apparatus includes a plurality of display element electrodes each constituted of a pair of electrode segments having linear edges opposing each other, with a predetermined distance provided therebetween, the width of each of the electrode segments becoming narrower in the direction away from the associated one of the linear edges. The plasma display apparatus also includes a barrier structure, the inner surfaces of which being disposed along the outer ends of the plurality of display element electrodes and thereby defining a plurality of cells each of which is to be activated by the associated one of the plurality of display element electrodes so as to emit light. In the plasma display apparatus, ultraviolet rays caused by a discharge are efficiently transmitted to phosphor members on the surfaces of cells to emit light with a reduced loss of energy.
Abstract:
The present invention relates to a plasma display panel and method for manufacturing the same in which electron discharge characteristic is improved and a voltage margin can be secured. According to a first embodiment of the present invention, a plasma display panel including a plurality of a pair of display electrodes formed and arranged parallely on an upper plate, a plurality of address electrodes formed on a lower plate and arranged to be crossed to the display electrodes, a barrier rib defined a discharge space on the lower plate, and fluorescent body formed between the barrier ribs, includes further: a number of discharge cells having the discharge space; and an alkali metal layer formed in the discharge cells for supplying electrons to the discharge space.
Abstract:
In a method of manufacturing a device which includes processes in which a plurality of unit regions (first bits D1 and second bits D2) are established upon a substrate in the form of a lattice, and in which liquid drops are discharged by an ink device in each unit region, when a first bitmap which is made up from a plurality of the first bits D1 and a second bitmap which is made up from a plurality of the second bits D2 whose size is different from that of the first bits D1 have been established, the highest common divisor of the size of the first bits D1 and the size of the second bits D2 is calculated, this highest common divisor is taken as the size of third bits D3, the first bitmap and the second bitmap are re-set to the third bits, and the liquid drops are discharged in positions regulated by the third bitmap.
Abstract:
A plasma display panel having improved contrast without needing an additional manufacturing process includes: a transparent front substrate, a rear substrate arranged on a lower portion of the front substrate; sustain electrode pairs arranged parallel to each other and located between the front substrate and the rear substrate; a transparent first dielectric layer covering the sustain electrode pairs; address electrodes crossing the sustain electrode pairs and arranged between the sustain electrode pairs and the rear substrate; a second dielectric layer of a light absorbing color covering the address electrodes; transparent partition walls arranged on the second dielectric layer and defining light emitting cells; phosphor layers arranged in the light emitting cells; and a discharge gas filling the light emitting cells.