Abstract:
Digestion of cellulosic biomass solids to form a hydrolysate may be conducted with integrated catalytic reduction during digestion to transform soluble carbohydrates in the hydrolysate into a more stable reaction product. Such integrated catalytic reduction may be conducted using a slurry catalyst. Biomass conversion systems for performing integrated catalytic reduction can comprise: a hydrothermal digestion unit that contains a slurry catalyst capable of activating molecular hydrogen; an optional hydrogen feed line that is operatively connected to the hydrothermal digestion unit; and a fluid circulation loop comprising the hydrothermal digestion unit and a catalytic reduction reactor unit, the catalytic reduction reactor unit also containing the slurry catalyst.
Abstract:
The invention relates to a hydrocarbon recovery composition, which composition contains: a) a first anionic surfact ant selected from the group consisting of a propoxylated primary alcohol carboxylate and a propoxylated primary alcohol glycerol sulfonate; and b) a second anionic surfactant selected from the group consisting of a propoxylated primary alcohol carboxylate and a propoxylated primary alcohol glycerol sulfonate, and wherein the first and second anionic surfactants are different. Further, the invention relates to an injectable liquid containing the hydrocarbon recovery composition and a method for treating a hydrocarbon containing formation.
Abstract:
The present invention provides a process for the oxidative dehydrogenation of ethane to ethylene, the process at least comprising the steps of: (a) providing an ethane-containing stream (10); (b) subjecting the ethane-containing stream (10) provided in step (a) to oxidative dehydrogenation, thereby obtaining a stream (20) containing at least ethylene, water and acetic acid; (c) separating acetic acid from the stream (20) obtained in step (b), thereby obtaining a concentrated acetic acid stream (60) and a first ethylene-enriched stream (40); (d) subjecting the concentrated acetic acid stream (60) obtained in step (c) to hydrogenation thereby obtaining an ethanol-containing stream (80); and (e) subjecting the ethanol-containing stream (80) obtained in step (d) to dehydration thereby obtaining a second ethylene-enriched stream (90).
Abstract:
A process for liquefying a cellulosic material to produce a liquefied product comprising contacting the cellulosic material with a hydrogenation catalyst a liquid medium; and a source of hydrogen. The hydrogenation catalyst comprises a hydrogenating metal or precursor thereof and a megaporous structure, wherein the megaporous structure comprises a porosity of at least 60% by volume and at least 30 volume % of the pore volume of the megaporous structure is present in megapores having a diameter of equal to or more than 1 micrometer.
Abstract:
Digestion of cellulosic biomass to produce a hydrolysate may be accompanied by the formation of cellulosic fines which may be damaging to system components. Biomass conversion systems that may address the issue of cellulosic fines may comprise a fluid circulation loop comprising: a hydrothermal digestion unit; a solids separation unit that is in fluid communication with an outlet of the hydrothermal digestion unit; where the solids separation unit comprises a centripetal force-based separation mechanism that comprises a fluid outlet and a solids outlet; and a catalytic reduction reactor unit that is in fluid communication with the fluid outlet of the centripetal force-based separation mechanism and an inlet of the hydrothermal digestion unit.
Abstract:
The present invention provides a Fischer-Tropsch derived gas oil fraction having an initial boiling point of at least 300° C. and a final boiling point of at most 365° C. In another aspect the present invention provides a functional fluid formulation comprising a Fischer-Tropsch derived gas oil fraction having an initial boiling point of at least 300° C. and a final boiling point of at most 365° C.
Abstract:
The invention provides a process for the catalytic conversion of a saccharide-containing feedstock in a reactor, wherein saccharide-containing feedstock is provided to the reactor as a feed stream through a feed pipe and is contacted with a catalyst system in the reactor, wherein the saccharide-containing feedstock in the feed pipe is maintained at a temperature below the degradation temperature of the saccharide contained therein and a section of the wall of the reactor at the point where the feed pipe enters the reactor is cooled to a temperature below the temperature of the bulk of the reactor and the reactor contents.
Abstract:
A process and a system for enhancing recovery of oil from an oil-bearing formation are provided in which water having a total dissolved solids content is filtered to remove some solids in a filter assembly, the filtered water is treated to remove some ions in a capacitive deionization assembly, and the filtered deionized water is injected into the oil-bearing formation to mobilize crude oil and enhance oil recovery from the formation.
Abstract:
A selective removal of metal and its anion species that are detrimental to subsequent hydrothermal hydrocatalytic conversion from the biomass feed prior to carrying out catalytic hydrogenation/hydrogenolyzis/hydrodeoxygenation of the biomass in a manner that does not reduce the effectiveness of the hydrothermal hydrocatalytic treatment while minimizing the amount of water used in the process is provided.
Abstract:
The present invention relates to a composite ionic liquid comprising ammonium cations and composite coordinate anions derived from two or more metal salts, wherein at least one metal salt is an aluminium salt and any further metal salt is a salt of a metal selected from the group consisting of Group IB elements of the Periodic Table, Group IIB elements of the Periodic Table and transition elements of the Periodic Table, wherein the ammonium cation is a N,N′-disubstituted imidazolium cation, the substituents independently being selected from C1-C10 alkyl, and C6-C10 aryl. The composite ionic liquid of the invention is a stable catalyst, which can suitably be used to run an ionic liquid alkylation process which produces less solids and an alkylate product comprising less organic chlorides as side products than processes known from the prior art.