Abstract:
A vial has a body defining a chamber for receiving a substance therein; and a valve assembly coupled in fluid communication with the chamber and defining (i) an open position permitting at least one of (a) passage of the substance through the valve assembly and into the chamber for storing the substance in the chamber, and (b) passage of the substance out of the chamber for dispensing the substance therefrom; and (ii) a closed position forming a fluid-tight seal between the chamber and exterior of the container. A filling member engages a flexible valve member of the valve assembly to move the valve member between the closed and open positions to fill and seal the vial, respectively. A syringe is connectable to the vial. The valve assembly opens upon connecting the syringe to the vial to allow the substance within the vial to be withdrawn from the vial and into the syringe by actuating a plunger of the syringe, and the valve assembly closes upon disconnecting the vial and syringe to hermetically seal and store the substance remaining in the syringe for later use.
Abstract:
An ophthalmic delivery device includes a body defining a fluid reservoir and a pump in fluid communication with the reservoir. The delivery device also includes a nozzle that includes a dosage chamber for holding a dosage of fluid, a valve seat, and a valve cover. The valve cover extends about the valve seat and forms an interface therebetween and the valve seat includes an outlet aperture. The interface is in fluid communication with the outlet aperture and the dosage chamber, and at least part of the valve cover is movable between (i) a closed position with the valve cover engaging the valve seat to close the interface and form a fluid-tight seal therebetween, and (ii) an open position with at least part of the valve cover spaced away from the valve seat in response to fluid flowing through the outlet aperture at a pressure greater than a valve opening pressure to allow the passage of pressurized fluid therebetween. The valve seat and the valve cover are dimensioned to dispense the dosage of fluid through the interface at a velocity of equal to or less than 6 meters per second.
Abstract:
A resealable cap for a medicament vial has a base portion formed of vulcanized rubber or like material known for providing a stable environment for the medicament contained within the vial, and a resealable portion overlying the base portion. The resealable portion is made of low-density polyethylene or like material, and can be punctured by a needle or like injection member for dispensing medicament into the vial. Prior to filling, the cap is assembled to the vial and the cap/vial assembly is sterilized. Then, a needle is inserted through the cap and medicament is introduced through the needle and into the vial. Upon withdrawal of the needle, the penetrated region of the cap is fused by laser or direct heat sealing to hermetically seal the needle hole in the cap.
Abstract:
A dispenser for dispensing a fluid includes a rigid vial that has a main fluid chamber containing a fluid, and a pump assembly that is in fluid communication with the main fluid chamber and is configured to dispense a predetermined quantity of fluid from the main fluid chamber. A flexible bladder is provided which is located within the main fluid chamber and is configured to expand to fill the ullage created within the main fluid chamber during dispensing of fluid by the pump assembly. The resilient bladder tends to force itself outwardly toward the rigid vial and, in turn, increases the pressure within the main fluid chamber in comparison to the interior of the bladder to thereby prevent the ingress of air or vapors through the bladder or otherwise into the main fluid chamber.
Abstract:
An aerosol tip mechanism for an aerosol-type dispenser for dispensing liquid content has a flexible outer shell, a rigid cap portion composed of lower and upper portions, and a rigid nozzle portion having a rigid shaft received within the outlet portion of the flexible outer shell. The rigid shaft interfaces the outlet portion of the outer shell, forming a first normally-closed one-way valve. The lower and upper portions of the rigid cap portion form boots adapted to receive an outlet portion of the flexible outer shell, the boots thereby constraining a lateral motion of the outlet portion of the outer shell, and symmetrically centering the outlet portion around the rigid shaft of the nozzle. The rigid nozzle portion includes a plurality of liquid channels for delivering liquid from a reservoir to a swirling chamber defined within the rigid cap portion, which liquid channels are configured to minimize energy losses of the liquid and promote a more homogeneous fluid particle size in the dispensed aerosol. The aerosol tip mechanism provides for long-term sterility of the stored fluid, which in turn allows for preservation of the sterility of non-chemically preserved formulations, which may be in the form of suspension or liquid gels.
Abstract:
An apparatus is used to apply medicament to an eye and stores the medicament in a medicament chamber. A nozzle is coupled in fluid communication with the medicament chamber and is formed by an outer nozzle portion and an inner nozzle portion received within the outer nozzle portion. A seam is formed by the interface of the inner nozzle portion and the outer nozzle portion and is normally in a closed position to prevent the passage of medicament through the nozzle. The seam opens in response to the flow of medicament of sufficient pressure into the seam to permit the passage of medicament through the nozzle for release into the eye.
Abstract:
A nozzle mechanism for generating an aerosol-type liquid discharge is provided, which nozzle mechanism ensures one-way movement of liquid during discharge and also has a substantially zero "dead volume" at the tip of the nozzle. The nozzle mechanism includes a flexible nozzle portion with an outlet and a fluid channel, a rigid shaft received within the flexible nozzle portion, and a rigid housing surrounding the flexible nozzle portion and exposing the outlet. The rigid shaft interfaces the outlet to form a first normally-closed, one-way valve, as well as to define a swirling chamber for collecting the liquid which has been channeled from the liquid reservoir, prior to being discharged via the outlet. The outlet has a tubular wall with thickness that decreases along the elongated axis of symmetry for the outlet toward the tip of the outlet. The fluid channel is circumferentially positioned within the flexible nozzle portion to create swirling action of the liquid delivered to the swirling chamber. Once the pressure on the swirling liquid reaches a threshold pressure sufficient to radially deform the portion of the outlet forming the first normally-closed valve, the liquid in the swirling chamber is discharged through the outlet. The nozzle mechanism is coupled to a flexible body portion which has a substantially tubular shape and a wall thickness which decreases from the bottom of the body portion toward the flexible nozzle portion. The rigid shaft received within the flexible nozzle portions extends down into the flexible body portion so that a second portion of the rigid shaft interfaces the flexible body portion to form a second normally-closed, one-way valve in the fluid communication path between the liquid reservoir and the swirling chamber.