Abstract:
A method for transmitting a channel state information reference signal (CSI-RS) in a specific downlink subframe having an extended cyclic prefix (CP) in a wireless communication system according to an embodiment of the present invention includes: generating a CSI-RS sequence and mapping the CSI-RS sequence to CSI-RS complex-valued modulation symbols; and mapping the CSI-RS complex-valued modulation symbols to at least one pattern of a first CSI-RS pattern set composed of a plurality of CSI-RS patterns and a second CSI-RS pattern set composed of a plurality of CSI-RS patterns, the CSI-RS patterns being composed of REs to which CSI-RS complex-valued modulation symbols are mapped, wherein the second CSI-RS pattern set is available when 2 OFDM symbols are used for a physical downlink control channel in the downlink subframe or a specific downlink control information format is configured.
Abstract:
The present invention relates to a wireless communication system and, more specifically, to a method for an operation of cancelling or mitigating interference, and an apparatus therefor. A method of cancelling or mitigating interference in a wireless communication system performed by a terminal includes receiving, from a serving cell, restricted configuration information of an enhanced physical downlink control channel (EPDCCH) which a dominant interference cell transmits, detecting the EPDCCH using the restricted configuration information of the EPDCCH, and performing an operation of cancelling or mitigating interference for the dominant interference cell using the detected EPDCCH, wherein the restricted configuration information of the EPDCCH includes a restricted set of parameters related to the EPDCCH configurable by the dominant interference cell.
Abstract:
A method for receiving information for interference cancellation of a user equipment (UE) includes detecting downlink control information including interference control information for a specific resource block (RB) scheduled for the UE by using an index of the specific RB, wherein the interference control information for the specific RB includes control information related to interference signal in the specific RB and indicates that the interference control information for the specific RB is the same as interference control information for one or more RBs having a series of indices subsequent to the index of the specific RB, and performing cancellation of interference signal corresponding to the interference control information in the specific RB and the one or more RBs using the interference control information for the specific RB.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and device for performing or supporting NIB coordinated multi-point (CoMP) transmission in a wireless communication system. The method and device for performing NIB CoMP transmission in the wireless communication system according to an embodiment of the present invention include: receiving signaling comprising at least one CoMP hypothesis set and at least one benefit metric from a first network node, at a second network node; and performing CoMP transmission based on the at least one CoMP hypothesis set, at the second network node. The at least one CoMP hypothesis set comprises information on hypothetical operation of CoMP network nodes.
Abstract:
A method for receiving a downlink signal by user equipment in a wireless communication system that supports coordinated multiple-point transmission and reception (CoMP) according to one embodiment of the present invention includes receiving information regarding two candidate demodulation reference signal (DMRS) groups for generating a sequence of downlink demodulation reference signals; and generating a sequence of downlink demodulation reference signals using one of at least two candidate DMRS configuration parameter sets. Each of at least two candidate DMRS configuration parameter sets includes a cell identifier and a scrambling identifier. The scrambling identifier included in one of at least two candidate DMRS configuration parameter sets may be determined whether the two cell identifiers included respectively in at least two candidate DMRS configuration parameter sets are the same or not.
Abstract:
A method for transmitting a second demodulation reference signal added to support an additional antenna port (referred to as a “second antenna” hereinafter) in a downlink subframe having an extended cyclic prefix (CP), in which a resource (referred to as a “first resource pattern” hereinafter) to which a first demodulation reference signal will be mapped is configured, through a predetermined number of antenna ports (referred to as a “first antenna” hereinafter) in a wireless communication system includes: specifying positions of resources to which a channel state information reference signal (CSI-RS) is mapped in subframe(s) in which the CSI-RS is not transmitted and a subframe in which the CSI-RS is transmitted on the basis of CSI-RS configuration information; selecting a resource (referred to as a “second resource pattern” hereinafter) to which the second demodulation reference signal will be mapped from resources of the subframe(s) in which the CSI-RS is not transmitted, the resources corresponding to the positions of the resources to which the CSI-RS is mapped; and mapping the second demodulation reference signal to the second resource pattern.
Abstract:
The present invention relates to a wireless communication system. A method for receiving data by a user equipment (UE) in a cooperative multi-point (CoMP) wireless communication system includes receiving downlink control information (DCI) that does not contain information indicating a transmission base station (BS) that actually transmits data among a plurality of BSs that participate in CoMP, receiving information about zero-power channel state information-reference signal (CSI-RS) of each of the plural BSs, and assuming that data is not mapped to a resource element of zero-power CSI-RS with a lowest index and receiving the data through a physical downlink control channel (PDSCH).
Abstract:
A method for receiving interference cancellation information of a mobile station (MS), which is performed by the MS, includes receiving a virtual radio network temporary identifier (V-RNTI) set including a plurality of V-RNTIs for cancellation of an interference signal from a serving base station, each of the plurality of V-RNTIs being associated with RNTIs of one or more MSs (hereinafter, referred to as “neighboring MSs) served by a neighboring base station, and receiving a downlink control channel for a first neighboring MS of the neighboring MSs using at least one V-RNTI of the V-RNTI set. The downlink control channel is a double CRC-downlink control channel with a first cyclic redundancy check (CRC) bit scrambled by an RNTI of the first neighboring MS and a second CRC bit scrambled by the at least one V-RNTI and is received in a specific subframe.
Abstract:
A method for receiving a reference signal for positioning in a wireless communication system by a user equipment (UE) is disclosed. The method includes receiving a plurality of reference signal sequences for positioning to which different frequency shift values are applied, calculating a correlation between the plurality of reference signal sequences for positioning and transmitted reference signal sequences for positioning corresponding to the plurality of reference signal sequences in a time domain, and determining a time domain index having a highest value from the correlation as a reference time point for positioning, wherein the frequency shift value is determined according to the sum of multiplication of an index of each reference signal sequence and a frequency shift interval, and frequency offset.
Abstract:
The present invention relates to a wireless communication system. A method for receiving data by a user equipment (UE) in a cooperative multi-point (CoMP) wireless communication system includes receiving downlink control information (DCI) that does not contain information indicating a transmission base station (BS) that actually transmits data among a plurality of BSs that participate in CoMP, receiving information about zero-power channel state information-reference signal (CSI-RS) of each of the plural BSs, and assuming that data is not mapped to a resource element of zero-power CSI-RS with a lowest index and receiving the data through a physical downlink control channel (PDSCH).