Abstract:
A two-axis tiltable linear array of MEMS micromirrors is described. The individual micromirrors of the array are flexibly suspended over a common substrate by using two pairs of serpentine hinges coupled by a gimbal ring and are actuated by using tilt and roll electrodes. The tilt actuator regions of the micromirrors are disposed within the gimbal rings, the roll hinges connecting the tilt actuator regions to the micromirrors, which provides for decoupling of the tilt and the roll of the micromirror. The structure allows for considerable decoupling of the tilt and the roll and, or the pistoning effects observed upon micromirror actuation. The structure is suitable for application in a wavelength selective optical switch.
Abstract:
An aspect of the embodiment, a MEMS device includes a rotating unit, a first hinge, a first frame and an actuator. The actuator has a plurality of electrodes for rotating the rotating unit. The first frame has one of the electrodes. A portion of silicon layer by the electrode of the frame is chamfered.
Abstract:
A total length of members (11, 13, 15, 17, 19, 21, 23, 25) formed in an X-axis direction of a spring (1) is larger than a spring length of the spring (1) and larger than a total length of members (12, 14, 16, 18, 20, 22, 24) formed in a Y-axis direction. With this arrangement, spring constants of respective axes can be increased, and a spring constant in a direction R can be set appropriately and freely within a wider range.
Abstract:
A microminiature moving device has disposed on a single-crystal silicon substrate movable elements such as a movable rod and a movable comb electrode that are displaceable in parallel to the substrate surface and stationary parts that are fixedly secured to the single-crystal silicon substrate with an insulating layer sandwiched between. Depressions are formed in the surface regions of the single-crystal silicon substrate where no stationary parts are present and the movable parts are positioned above the depressions. The depressions form gaps large enough to prevent foreign bodies from causing shorts and malfunctioning of the movable parts.
Abstract:
A first electrode and a sacrificial layer are sequentially formed on a substrate, and then first openings for forming supports inside are formed in the first electrode and the sacrificial layer. The supports are formed in the first openings, and then a second electrode is formed on the sacrificial layer and the supports, thus forming a micro electro mechanical system structure. Afterward, an adhesive is used to adhere and fix a protection structure to the substrate for forming a chamber to enclose the micro electro mechanical system structure, and at least one second opening is preserved on sidewalls of the chamber. A release etch process is subsequently employed to remove the sacrificial layer through the second opening in order to form cavities in an optical interference reflection structure. Finally, the second opening is closed to seal the optical interference reflection structure between the substrate and the protection structure.
Abstract:
A method for manufacturing a micro-electro-mechanical device, which has supporting parts and operative parts, includes providing a first semiconductor wafer, having a first layer of semiconductor material and a second layer of semiconductor material arranged on top of the first layer, forming first supporting parts and first operative parts of the device in the second layer, forming temporary anchors in the first layer, and bonding the first wafer to a second wafer, with the second layer facing the second wafer. After bonding the first wafer and the second wafer together, second supporting parts and second operative parts of said device are formed in the first layer. The temporary anchors are removed from the first layer to free the operative parts formed therein.
Abstract:
A MEMS module package using a sealing cap having heat releasing capability is disclosed, which comprises a lower substrate, a MEMS element mounted on the lower substrate, a driver integrated circuit mounted on the lower substrate adjacently to the MEMS element which operates the MEMS element, and a sealing cap positioned in contact with the lower substrate which has a MEMS-element protrusion portion in physical contact with the MEMS element and has one or more grooves for housing the MEMS element and the driver integrated circuit. The MEMS module package using a sealing cap having heat releasing capability and a manufacturing method thereof according to an aspect of the present invention utilize an effective heat releasing structure to release the heat generated in each element.
Abstract:
A micro mirror unit includes a moving part carrying a mirror portion, a frame and torsion bars connecting the moving part to the frame. The moving part, the frame and the torsion bars are formed integral from a material substrate. The frame includes a portion thicker than the moving part.
Abstract:
A method is provided for making a micromirror unit which includes a frame, a mirror forming base, and bridges connecting the frame to the mirror forming base. The method includes the following steps. First, a first mask pattern is formed on a substrate for masking portions of the substrate which are processed into the frame and the mirror forming base. Then, a second mask pattern is formed on the substrate for masking portions of the substrate which are processed into the bridges. Then, the substrate is subjected to a first etching process with the first and the second mask patterns present as masking means. Then, the second mask pattern is removed selectively. Then, the substrate is subjected to a second etching process with the first mask pattern present as masking means. Finally, the first mask pattern is removed.
Abstract:
MEMS devices are provided that are capable of movement due to a flexible portion formed of unique materials for this purpose. The MEMS device can have a flexible portion formed of a nitride or oxynitride of at least one transition metal, and formed of a nitride or oxynitride of at least one metalloid or near metalloid; a flexible portion formed of a single transition metal nitride or oxynitride and in the absence of any other metal or metalloid nitrides; a flexible portion formed of one or more late transition metal nitrides or oxynitrides; a flexible portion formed of a single transition metal in nitride form, and an additional metal substantially in elemental form; or a flexible portion formed of at least one metalloid nitride or oxynitride. The MEMS devices can be any device, though preferably one with a flexible portion such as an accelerometer, DC relay or RF switch, optical cross connect or optical switch, or micromirror arrays for direct view and projection displays. The flexible portion (e.g. the hinge of the micromirror) is preferably formed by sputtering a metal and/or metalloid target in nitrogen ambient so as to result in a sputtered hinge. It is also possible to form other parts of the MEMS device (e.g structural parts that do not flex).