Abstract:
A composition of matter is about 1 to about 3 percent rhenium, from about 6 to about 9 percent aluminum, from 0 to about 0.5 percent titanium, from about 4 to about 6 percent tantalum, from about 12.5 to about 15 percent chromium, from about 3 to about 10 percent cobalt, from about 2 to about 5 percent tungsten, from 0 to about 0.2 percent hafnium, from 0 to about 1 percent silicon, from 0 to about 0.25 percent molybdenum, from 0 to about 0.25 percent niobium, balance nickel and minor elements. The composition is preferably made into a substantially single crystal article, such as a component of a gas turbine engine.
Abstract:
A coated article, a coating for protecting an article, and a method for protecting an article are provided. The article comprises a metallic substrate and a substantially single-phase coating disposed on the substrate, wherein the coating comprises nickel (Ni) and at least about 30 atomic percent aluminum (Al); the coating further comprises a gradient in Al composition, the gradient extending from a first Al concentration level at an outer surface of the coating to a second Al concentration level at an interface between the substantially single-phase coating and the substrate, wherein the first Al concentration level is greater than the second Al concentration level and the second concentration level is at least about 30 atomic percent Al.
Abstract:
A hybrid component (30) having a cast single crystal superalloy portion (32) and an attached powder metallurgy material portion (34). The component may be a blade (30) of a gas turbine engine having a single crystal airfoil section and a powder metallurgy material root section. The powder metallurgy material may extend to form a core (36) within the airfoil section and may include cooling passages 38. The single crystal portion has a relatively simple geometry so that casting yields are optimized. The powder metallurgical portion includes the lower stressed and more complicated geometry sections of the component. A method of forming such a component includes casting the single crystal superalloy portion, then using that portion to form part of the mold for forming the powder metallurgy material portion.
Abstract:
An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece is a semi-solid braze that comprises a first component and a second component. The first component of the semi-solid braze comprises a first element and a second metallic element, wherein the first element is one of titanium, palladium, zirconium, niobium, germanium, silicon, and hafnium, and the second metallic element is a metal selected from the group consisting of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the second metallic element being different from the first element. The second component has a melting temperature of at least about 1450° C. and comprises one of niobium, molybdenum, titanium, hafnium, silicon, boron, aluminum, tantalum, germanium, vanadium, tungsten, zirconium, and chromium. This abstract is submitted in compliance with 37 C.F.R. 1.72(b) with the understanding that it will not be used to interpret or limit the scope of or meaning of the claims.
Abstract:
Methods for repairing and manufacturing a gas turbine airfoil, and the airfoil repaired and manufactured with such methods are presented with, for example, the repair method comprising providing an airfoil having specified nominal dimensions, the airfoil comprising a first material, the first material having a creep life and a fatigue life, the airfoil further comprising a leading edge section and a trailing edge section; removing at least one portion of at least one section of the airfoil to create at least one deficit of material for the airfoil relative to the specified nominal dimensions, the at least one section selected from the group consisting of the leading edge section and the trailing edge section; providing at least one insert comprising a second material, the second material having a creep life that is at least substantially equal to the creep life of the first material, and a fatigue life that is at least substantially equal to the fatigue life of the first material; and disposing the at least one insert onto the airfoil such that the at least one deficit of material is substantially eliminated.
Abstract:
A method of producing an aluminum ball, comprising the steps of: a cutting step of cutting a bar-shaped blank formed of a material containing aluminum as a major component, into cut pieces; an aluminum-ball forming step of forming each of the cut pieces into the aluminum ball by semi-closed die forging, said aluminum ball having a flash formed on an outer circumferential surface thereof; and a flash removing step of removing the flash from the aluminum ball formed by forging. Also disclosed is a method of producing a shoe for a compressor, from the aluminum ball.
Abstract:
The present invention provides, in one embodiment, an annular turbine seal for disposition in a turbine between a rotatable component having an axis of rotation and a turbine housing about the same axis of rotation. The turbine seal has a plurality of arcuate seal carrier segments that have an abradable portion secured to the seal carrier segments. In addition, at least one spring is disposed on the seal carrier segment to exert a force and maintain the seal carrier segment adjacent to the rotatable component.
Abstract:
In a heat shield (1), in particular for combustion chambers and for thermal fluid flow machines, the heat shield consists of a feltlike material (3) composed of compressed and sintered intermetallic fibers. Advantageously, the intermetallic fibers consist of an iron based or nickel based intermetallic phase.
Abstract:
In a dry vacuum pump including: a casing having an inner cylinder (1a) communicating with an inlet (6) and an outlet (7) of the pump; shafts (15b) supported by the casing; spiral toothlike parts (15a) formed on the shaft (15b); a plurality of screw rotors (15), each of which includes the shaft (15b) and the spiral toothlike parts (15a) received in the inner cylinder (1a) intermeshing with each other; timing gears (16, 19), each of which is attached to the respective shafts (15b) of the screw rotors (15) and intermeshes with each other; and locking mechanisms (17), each of which for fixing the timing gear (16, 19) to the shaft (15b), both of the shaft (15b) and the toothlike part (15a) made of spheroidal graphite cast iron containing 20 to 30 wt % of nickel are casted integrally. With the construction described above, a problem such that a degree of vacuum deteriorates due to peeling of a resin coating is solved as to a dry vacuum pump pumping corrosive gas. A tapered face of 1/(20L) is formed with respect to the toothlike part (15a) so that an outer diameter of the toothlike part (15a) is shortened from the center of the toothlike part (15a) to the outlet side of the fluid, L being a length of the toothlike part, and a aground finish-surface is formed with respect to the toothlike part (15a) so that a diameter of the toothlike part (15a) is shortened by 3/100 to 4/100 mm from a position, where is about 10 mm offset toward the inlet side from the center of the toothlike part (15a), to the outlet side. With this construction, a seizure of the toothlike part (15a) is prevented from occurring. Nitrogen gas is supplied into the casing and an outlet path (20) connecting the outlet (7) with a scrubber (11) is a straight pipe, in which a silencer is removed. With this construction, heat capacity of the gas discharged from the outlet (7) is increased and reaction products are prevented from depositing in the outlet path (20).
Abstract:
A turbine engine includes a turbine driven by hot gas, a compressor rotating with the turbine to generate compressed air, an annular combustor coaxial with the turbine to combust fuel and compressed air to generate the hot gas, and an annular recuperator to recover heat from the turbine exhaust gas and heat the compressed air for combustion. The annular recuperator surrounds the turbine and includes two contiguous parts made from two materials having different thermal properties and joined to one another to form a single annular structure. One recuperator part is formed from a high-temperature material having a high thermal limit for exposure to high-temperature turbine exhaust gas, and the other recuperator part is formed from a material having a lower thermal limit than the high-temperature material for exposure to reduced-temperature turbine exhaust gas.