Abstract:
A memory cell structure comprises a semiconductor substrate, two stack structures positioned on the semiconductor substrate, two conductive spacers positioned on sidewalls of the two stack structures, a gate oxide layer covering a portion of the semiconductor substrate between the two conductive spacers and a gate structure positioned at least on the gate oxide layer. Particularly, each of two stack structures includes a first oxide block, a conductive block and a second oxide block, and the two conductive spacers are positioned at on the sidewall of the two conductive blocks of the two stack structures. The two conductive spacers are preferably made of polysilicon, and have a top end lower than the bottom surface of the second oxide block. In addition, a dielectric spacer is positioned on each of the two conductive spacers.
Abstract:
A mask at frequency domain comprises a plurality of amplitude patterns positioned on a first surface of the mask and a plurality of phase patterns positioned on a second surface of the mask. The amplitude patterns have different vertical thicknesses to change the amplitude of an exposing light, and the phase patterns have different vertical thicknesses to change the phase of the exposing light. Preferably, the amplitude patterns are made of inorganic material, such as molybdenum silicide (MoSi), and the phase patterns are made of transparent material, such as quartz. The amplitude patterns and phase patterns are the Fourier transform of a circuit layout, and their numbers and positions are correspondent with each other.
Abstract:
A phase change memory device comprising an electrode, a phase change layer crossing and contacting the electrode at a cross region thereof, and a transistor comprising a source and a drain, wherein the drain of the transistor electrically connects the electrode or the phase change layer is disclosed.
Abstract:
A method for fabricating a gate structure is provided. A pad oxide layer, a pad conductive layer and a dielectric layer are sequentially formed over a substrate. A portion of the dielectric layer is removed to form an opening exposing a portion of the pad conductive layer. A liner conductive layer is formed to cover the dielectric layer and the pad conductive layer. A portion of the liner conductive layer and a portion of the pad conductive layer are removed to expose a surface of the pad oxide layer to form a conductive spacer. The pad oxide layer is removed and a gate oxide layer is formed over the substrate. A first gate conductive layer and a second gate conductive layer are sequentially formed over the gate oxide layer. A portion of the gate oxide layer is removed and a cap layer to fill the opening.
Abstract:
A memory structure comprising a plurality of memory cells is described. Each memory cell comprises a substrate, a shallow trench isolation, a spacer, a tunnel oxide, and a floating gate. The shallow trench isolation in the substrate is used to define an active area. The spacer is at the sidewall of the shallow trench isolation and is higher than the shallow trench isolation. The tunnel oxide is on the active area. The floating gate is on the tunnel oxide.
Abstract:
A method for preparing a recessed transistor structure comprises the steps of performing an implanting process to form a doped layer in a substrate, forming a plurality of gate-isolation blocks on the substrate, forming a plurality of first spacers on sidewalls of the gate-isolation blocks, removing a portion of the substrate not covered by the first spacers and the gate-isolation blocks to form a plurality of depressions in the substrate between the first spacers, forming a gate oxide layer on inner sidewalls of the depressions, and forming a gate structure on the gate oxide layer to complete the recessed transistor structure.
Abstract:
An exemplary memory device includes a first dielectric layer with a first conductive contact therein. A phase change material (PCM) is disposed on top of the first dielectric layer and provided with an insulating layer integrally on a top surface of the PCM. A first electrode is disposed over the first dielectric layer and covered a portion of the first conductive contact and the insulating layer in a first direction, contacting to the first conductive contact and a first side of the PCM. A second electrode is disposed over the first dielectric layer and covered a portion of the insulating layer in a second direction, contacting to a second side of the PCM. A second dielectric layer is disposed over the first dielectric layer to cover the first electrode, the second electrode, the insulating layer and the PCM, including a second conductive contact connected to the second electrode.
Abstract:
A phase-change memory and fabrication method thereof. The phase-change memory comprises a transistor, and a phase-change material layer. In particular, the phase-change material layer is directly in contact with one electrical terminal of the transistor. Particularly, the transistor can be a field effect transistor or a bipolar junction transistor.
Abstract:
A phase change memory device comprising an electrode, a phase change layer crossing and contacting the electrode at a cross region thereof, and a transistor comprising a source and a drain, wherein the drain of the transistor electrically connects the electrode or the phase change layer is disclosed.
Abstract:
A method and a system for auto-dispatching lots in a photolithography process are provided. According to the method, first, a prioritized lot list is established according to the working status of a plurality of photolithography equipments. Then, a processable lot with the highest priority from the lot list is selected and a relative process background information is used for determining a photolithography operation type. Finally, the selected lot is dispatched according to the photolithography operation type. The present invention dispatches the lot with the appropriate dispatching rule according to the process background information of the lot. As a result, the quality of the photolithography process can be ensured so as to increase the throughput, and the labor overhead can be reduced to achieve the purpose of production cost reduction.