Abstract:
Provided is a method for producing a pattern of an electroconductive member, comprising: a step of forming a resin film on a substrate surface; a step of incorporating the first metal component into the resin by applying to the resin a liquid which contains a complex of a first metal component, which contains also a second metal component different from the first component, and to which a compound forming a complex with the second metal component is contacting or contacted preliminary; and a step of baking the resin film to form the electroconductive member from the first metal component incorporated into the resin film. Thus, the second metal component is prevented from adversely affecting the first metal component to be incorporated into the resin.
Abstract:
An electron-emitting device comprises a pair of electrodes and an electroconductive film arranged between the electrodes and including an electron-emitting region carrying a graphite film. The graphite film shows, in a Raman spectroscopic analysis using a laser light source with a wavelength of 514.5 nm and a spot diameter of 1 μm, peaks of scattered light, of which 1) a peak (P2) located in the vicinity of 1,580 cm−1 is greater than a peak (P1) located in the vicinity of 1,335 cm−1 or 2) the half-width of a peak (P1) located in the vicinity of 1,335 cm−1 is not greater than 150 cm−1.
Abstract:
An electron-emitting device includes a pair of oppositely disposed electrodes and an electroconductive film arranged between the electrodes and including a high resistance region. The high resistance region has a deposit containing carbon as a principal ingredient. The electron-emitting device can be used for an electron source of an image-forming apparatus of the flat panel type.
Abstract:
In an electron beam device employing an electron-emitting device in which a gate and a cathode are provided to sandwich a recess portion formed on an insulating member, electrons are scattered after the collision against the gate and then extracted, it is made possible to easily obtain stable electron emission characteristics and also to prevent the electron-emitting device from being deteriorated or being fractured due to overheating even when an excessive heat has been generated. The electron-emitting device includes the cathode having a protrusion 30 positioned astride the outer surface of the insulating member and the inner surface of the recess portion formed in the insulating member, and the gate including a layered structure of at least two electroconductive layers. A thermal expansion coefficient of the electroconductive layer which is arranged at a part facing to the protrusion is larger than that of the other electroconductive layer.
Abstract:
An electron-emitting device has a pair of device electrodes formed on a substrate and an electroconductive film connected to the device electrodes. The electroconductive film has a first gap between the device electrodes and has a carbon film having a second gap at least in the first gap. The substrate is formed by stacking a nitrogen-contained activation suppressing layer and an activation accelerating layer having a nitrogen containing ratio smaller than that of the activation suppressing layer onto a base and has nitrogen containing ratio distribution in the activation suppressing layer in a film thickness direction. The nitrogen containing ratio of the activation suppressing layer at the activation accelerating layer side is smaller than that at the base side.
Abstract:
A base body includes a first part and a second part, The second part has a lower thermal conductivity than the first part and is arranged adjacently to the first part. A first conductive film is formed on the first part and a second conductive film is formed on the second part. At least part of a gap is located above a boundary between the first part and the second part.
Abstract:
An electron emission apparatus can effectively suppress the adverse effect of electric discharges that can take place between the oppositely disposed electrodes of the apparatus to which a high voltage is applied by dividing the electrode adapted to have a higher electric potential into segments in order to reduce the electrostatic capacitance between the electrodes. In the case of an electron emission apparatus comprising electron-emitting devices, said plurality of electron-emitting devices are disposed such that the direction along which those that can be driven simultaneously are arranged is not parallel with the direction along which the electrode is divided into the electrode segments in order to reduce the variable range of the electric current that can flow in the segments.
Abstract:
An electron emission device having a high electron emitting rate and a display including the device are prodivided. The electron emission device using abrupt metal-insulator transition, the device including: a board; a metal-insulator transition (MIT) material layer disposed on the board and divided by a predetermined gap with portions of the divided MIT material layer facing one another; and electrodes connected to each of the portions of the divided metal-insulator transition material layer for emitting electrons to the gap between the portions of the divided metal-insulator transition material layer.
Abstract:
A method for forming patterned insulating elements on a substrate includes a plurality of exposure steps of exposing a photosensitive paste provided on the substrate through at least one mask having a predetermined pattern; a developing step of developing the exposed photosensitive paste to form a precursor pattern; and a firing step of firing the precursor pattern to form the patterned insulating elements. This method is applied to a method for forming an electron source and a method for forming an image display device including the electron source.
Abstract:
A three-dimensional structure forming a space in which a wiring-side portion of a device electrode is located is arranged on a rear plate. A surface potential of the three-dimensional structure is defined so that an electric field intensity of the space becomes weaker than an average electric field intensity expressed below, average electric field intensity=Va/d, where Va is application voltage of an anode electrode, and d is an interval between a rear plate and the face plate. The device electrode includes a high-temperature portion where temperature locally rises when current flows through the device electrode. The high-temperature portion is positioned in the space or at a distance of less than or equal to 20 μm from the space.