Abstract:
Embodiments of the invention relate generally to electric motors, alternators, generators and the like, and more particularly, to stator structures and rotor-stator structures for motors that can be configured to, for example, reduce detent.
Abstract:
An internal permanent magnet machine has multiple rotor sections, each section having multiple rotor laminations. Permanent magnets are placed asymmetrically in lamination openings to attenuate oscillations in torque caused by harmonic components of magnetic flux.
Abstract:
A method for assembling a direct drive generator assembly includes the steps of placing a rotor over a stator, leaving a gap therebetween. A magnetic hub is assembled using adjacent columns of magnets having opposed orientation, and placed in the air gap. Application of an input torque to generate cogging torque in first direction that offsets coggery torque in second direction.
Abstract:
Apparatuses and methods for an improved wind turbine and blade assembly are disclosed. The wind turbine has a wind turbine assembly being rotatably driven by the blade assembly. The wind turbine assembly has a shaft connected to an inner wheel by a supporting structure. A magnet array is disposed circumferentially about the inner wheel. A transformer array is disposed circumferentially about an outer wheel. The shaft rotates the inner wheel with the magnet array within the outer wheel having the transformer array for producing electricity. Blades are held in a neutral position into the wind by tensioning means.
Abstract:
A motor magnetic pole structure including a first seat having multiple first insulating arms and a second seat having multiple second insulating arms. Multiple first coils are wound on the first insulating arms and multiple second coils are wound on the second insulating arms. The first and second silicon steel seats overlap each other with the first and second insulating arms alternately positioned. In this case, the first and second coils wound on the first and second insulating arms are alternately positioned to intersect each other. The first and second silicon steel seats can assembled as necessary to enhance compatibility of the silicon steel seats and lower manufacturing cost. Moreover, the winding operation of the coils can be speeded.
Abstract:
To provide a magnetic machine capable of reducing the ripple and cogging of torque or thrust. An electric motor 1 includes three stators 6 to 8 each having an armature row, a rotor 3 having a permanent magnet row, and a rotor 10 having a soft magnetic material row. The respective phases in electrical angle between magnetic poles generated at respective armatures 6a to 8a of the armature row and the magnetic poles of the permanent magnet row are set to be each displaced in a predetermined direction by an electrical angle of 2π/3, and the respective phases in electrical angle between the magnetic poles generated at the respective armatures 6a to 8a of the armature row and soft magnetic material cores 11b to 13b of the soft magnetic material row are set to be each displaced in the predetermined direction by an electrical angle of π/3.
Abstract:
A rotor for a rotating electrical machine suppresses demagnetization of permanent magnets without deteriorating motor characteristics, is low-cost, and is highly reliable. The rotor has a plurality of rotor cores (2) that are stacked together, a plurality of permanent magnets (6a, 6b) axially divided by the rotor cores (2) and circumferentially arranged on each of the rotor cores (2), to circumferentially form magnetic irregularities, and a rotor blank (14a) made of nonmagnetic material arranged between those of the rotor cores (2) that are adjacent to each other.
Abstract:
A complementary permanent magnet structure capable of minimizing the cogging torque for a rotating electric machine, the complementary permanent magnet structure comprising: a magnetic pole core being cylinder shaped with even numbered arc-shaped magnetic sets positioned with equal distances on the circumference thereof, each magnetic set being composed of a first permanent magnet unit and a second permanent magnet unit; and an armature core being ring shaped with a plurality of slots; wherein the ratio of the number of the slots to the number of magnetic poles of the magnetic pole core is 3/2; wherein the first permanent magnet unit and the second permanent magnet unit are positioned correspondingly to generate two complementary cogging torques with 180 degrees of electrical angle difference.
Abstract:
In a brushless motor including a rotor having 2n poles and a stator having 3n slots, segment magnets arranged, in three columns, in the axial direction, thus constituting rotor poles. The segment magnets of adjacent columns, which are identical in polarity, are displaced in the circumferential direction, thus forming a three-stage step-skew structure. The skew angle θskew of each segment magnet is set to an electrical angle of 60° to 75°. The center angle of θm of each segment magnet is set to 46.8° to 52.7°.
Abstract:
A stator includes a cylindrical stator core and a coil. The stator core is formed by stacking a plurality of core sheets. The stator core has a groove formed in an outer circumferential surface thereof and a slot. The coil is inserted in the slot. The groove is located parallel to an axis of the stator core and the slot is skewed with respect to the axis.