Abstract:
A shock absorber includes: a cylinder; a piston; a piston rod; and a damping-force generating device that controls a flow of oil, caused by sliding of the piston in the cylinder, wherein the damping-force generating device includes: a valve body that generates a damping force according to opening and closing of the valve body on a channel in which the oil flows; a valve seat on which the valve body seats to close the channel; and an actuator that includes a plunger generating thrust to the valve body in a valve closing direction and a plunger chamber in which the oil is filled in order to actuate the plunger, and the plunger chamber communicates with a downstream side in a flowing direction of the oil with reference to a place where the valve body seats on the valve seat.
Abstract:
An embodiment provides a vane pump device. In the vane pump device, vane grooves of a rotor include columnar grooves which accommodate oil, and support the vanes. An inner-plate low pressure side recess portion is provided in an end surface of an inner plate along a rotation direction, and supplies oil to the columnar grooves. An outer-plate low pressure side through-hole and an outer-plate low pressure side recess portion are provided in an end surface of an outer plate along the rotation direction, and supply oil to the columnar grooves at a position facing the inner-plate low pressure side recess portion. An opening area of the inner-plate low pressure side recess portion is equal to a sum of opening areas of the outer-plate low pressure side through-hole and the outer-plate low pressure side recess portion.
Abstract:
An arm stopper mechanism, includes a pitman arm which includes an output shaft hole into which an output shaft is fitted, two tie rod holes onto which tie rods are respectively mounted, and two abutting faces to which a stopper is abutted; and the stopper which includes two contact faces, in which an angle formed by the two contact faces of the stopper is greater than an angle formed by the two abutting faces of the pitman arm and is 90° or more.
Abstract:
A clutch for use in a steer-by-wire steering device for a vehicle is configured to switch between mechanically coupling and uncoupling a torque transmission path between a steering member operated by a driver and a wheel-turning unit configured to turn wheels. The clutch includes a position change member and a conduction path. The position change member is configured to change between a first position and a second position to switch between mechanically coupling and uncoupling the torque transmission path. The conduction path includes two points that come into contact with or separate from each other in accordance with positional change of the position change member. The conduction path is connected to an electric circuit configured to detect a change in a resistance value of the conduction path.
Abstract:
An actuator includes a motor, a rotation transmitting member, a reverse input preventing device, a converting device, and a rod. The motor includes a rotating shaft. The rotation transmitting member is configured to transmit rotation of the rotating shaft. The reverse input preventing device includes an input member and an output member. The reverse input preventing device is configured to prevent external force input to the output member from being transmitted to the input member. The converting device includes a nut that rotates according to the rotation of the output member. The converting device is configured to convert a rotary motion of the nut into a linear motion. The rod is configured to advance and retract according to the linear motion of the converting device. The input member and the rotation transmitting member are integrated. The output member and the nut are integrated.
Abstract:
Disclosed is a vane pump device including: an even number of vanes; a rotor; a cam ring; an inner plate; and an outer plate. An inner-plate high pressure side through-hole and an inner-plate low pressure side recess portion are formed separately from each other in a rotation direction in cam ring side end surfaces of the inner plate and the outer plate, and communicate with a columnar groove which is a space of a vane groove on a rotation center side. The position of an inner-plate high pressure side through-hole upstream end and the position of an inner-plate low pressure side recess portion upstream end are point-symmetrical with each other with respect to the rotation center.
Abstract:
An inner-plate cam ring side recess portion is formed in a cam ring side end surface of an inner plate, communicates with a columnar groove which is a center side space in a vane grooves, and supplies a working fluid to the columnar groove. The inner-plate cam ring side recess portion is divided into multiple sections between a first side discharge port, through which the working fluid is discharged at a first discharge pressure from a pump chamber, and a second side suction port through which the working fluid is suctioned into a pump chamber discharging the working fluid at a second discharge pressure. An angle of a separation portion in a rotation direction is smaller than or equal to an angle between the first side discharge port and the second side suction port.
Abstract:
In a spring leg of a front fork, the capacity of a rebound air spring chamber is expanded and a stable rebound reaction force is ensured, and the spring leg of the front fork is provided with a sub-tank including an air chamber communicating with a rebound air spring chamber.
Abstract:
A pressure damping device includes a cylinder, a partitioning section, a flow channel formation section, a valve section a bypass channel and a throttle section. The flow channel formation section forms a flow channel, through which the fluid flows, in conjunction with a movement of the partitioning section. The valve section controls a flow of the fluid in the flow channel of the flow channel formation section. The bypass channel forms a flow of the fluid that bypasses the flow of the fluid flowing through the flow channel while opening the valve section. The throttle section that throttles the flow of the fluid through the bypass channel further on an outer side than the valve section with respect to the flow channel formation section.
Abstract:
A relative angle detection apparatus includes a first magnetometric sensor and a first voltage amplifier that output a signal corresponding to a relative rotation angle between a first rotation shaft and a second rotation shaft; a first amplifier circuit that amplifies the output signal of the first voltage amplifier; a second magnetometric sensor and a second voltage amplifier that output a signal that corresponds to the relative rotation angle; a second amplifier circuit that amplifies the output signal of the second voltage amplifier; a first resistor that is provided between the first amplifier circuit and a power supply terminal, or between the first amplifier circuit and a GND terminal; and a second resistor that is provided between the second amplifier circuit and the power supply terminal, or between the second amplifier circuit and the GND terminal.