Abstract:
The present invention relates to a method for receiving a downlink signal at a terminal in a wireless communication system. In particular, the method comprises: receiving a control channel to be transmitted to a specific subframe via a first carrier; and decoding a data channel corresponding to the control channel to be transmitted to the specific subframe via a second carrier, using at least one parameter included in the control channel, wherein information on the orthogonal frequency division multiplexing (OFDM) start symbol of data channels that are transmitted via each of at least one carrier allocated to the terminal is signaled through an upper layer.
Abstract:
A method and apparatus for performing a plurality of network attachment procedures to support a plurality of cells for a small cell-based User Equipment (UE) service are disclosed.
Abstract:
The present invention relates to methods and apparatuses for supporting or controlling a small cell on or off procedure. The method may comprise steps of receiving, by the MSC from a Source Small Cell (SSC), a Cell Off Indication message including a Cell State Change Indication parameter indicating a cell status of the SSC; transmitting, by the MSC to the SSC, an Expand Indication message indicating an expanding of the MSC when the Cell State Change Indication parameter indicates a cell off status, the Expanding Indication message including a Time to Start Expand parameter indicating when the MSC starts an expanding of its coverage and an Expand Timer parameter indicating a time period during which the expanding is performed; and starting the expanding of its coverage at a time indicated by the Time to Start Expand parameter during the time period indicated by the Expand Timer.
Abstract:
A method by which a terminal for supporting multiple radio access technologies (multi-RAT) recovers when a radio link failure has occurred can comprise the steps of: detecting a radio link failure of a first RAT while maintaining an RRC connection state with the first RAT; determining the radio link failure if a radio link of the first RAT does not recover after a predetermined first time elapses after the detection; and determining whether the radio link failure of the first RAT recovers during a predetermined second time after the determination.
Abstract:
Flexible employment of frame configuration in light of the Doppler frequency change is proposed. According to the present invention, frame configuration for a predetermined frequency band may be changed. Changing frame configuration in the present invention may include changing the number (≧0) of zero-power subcarriers which alternate with nonzero-power subcarriers.
Abstract:
A method for transmitting information data by using a Reed-Muller coding scheme in a wireless communication system is disclosed. The method includes configuring a number of resource elements for transmitting the information data; dividing the information data to first information data and second information data if a bit size O of the information data is equal to or larger than a predetermined number; applying RM coding on each of the first information data and the second information data; concatenating the coded first information data and the coded second information data, and transmitting the concatenated data by using the predetermined number of resource elements, wherein a minimum value Q′min for the number of resource elements is defined by a sum of a minimum value Q′min—1 for the number of resource elements corresponding to the first information data and a minimum value Q′min—2 for the number of resource elements corresponding to the second information data.
Abstract:
A method of supporting communication using two or more heterogeneous radio access technologies (RAT) comprises: receiving a setup message providing instructions for access to a second base station in a second communication network supporting the second RAT from a first base station in a first communication network supporting a first RAT; and attempting to access the second base station. At this time, when the terminal successfully accesses the second base station, specific traffic type data are transmitted and received through the second base station, and data other than the specific traffic type can be transmitted and received through the first base station.
Abstract:
A disclosure of the present invention provides a method of determining subframes. According to the method, subframe configuration information on a plurality of subframes is received from a base station. Here, each of the subframes may include a plurality of OFDM symbols, each of the OFDM symbols may include a cyclic prefix (CP) that is equal to or longer than zero in length, and the CP length may be the same across the plurality of OFDM symbols in a subframe. Also, according to the method, the CP length of a subframe to be received is determined based on the subframe configuration information. Here, the subframe configuration information may indicate that the CP length of each of the subframe is any one of a first CP length and a second CP length.
Abstract:
A location update method for a terminal which supports multiple radio access technologies, according to the present invention, comprises the steps of: a terminal releasing the connection to wireless resources of the base station of a first network, which is able to access different networks simultaneously by using a first and a second radio access technology, in order to maintain an access only to the base station of a second network which uses the second radio access technology; establishing a layer 3 tunnel (L3 tunnel) to a virtual base station of the first network while maintaining an access only to the base station of the second network; and transmitting the location update of the terminal to the virtual base station of the first network to which the L3 tunnel has been established.
Abstract:
A method and apparatus for obtaining information on a candidate cooperative device in a wireless communication system is provided. A base station receives information on a candidate source device from the candidate source device, receives information on a candidate cooperative device, discovered by the candidate source device, from the candidate source device, and determines whether the candidate cooperative device is served by the base station or not based on a database which includes information on a plurality of candidate source device served by the base station.