Abstract:
A method of forming a CMOS structure, the method including the acts of: forming a gate structure over a substrate layer; forming a silicide layer over the substrate layer; forming shallow source/drain areas in the substrate layer; forming an oxide diffusion barrier layer over the structure; forming a metal absorption layer over the oxide diffusion barrier layer; and melting portions of the substrate layer directly overlying the shallow source/drain areas, thereby transforming the shallow source/drain areas into shallow source/drain regions. The act of melting includes the act of exposing the metal absorption layer to pulsed laser beams.
Abstract:
A transistor device formed on a semiconductor-on-insulator (SOI) substrate with a buried oxide (BOX) layer disposed thereon and an active layer disposed on the BOX layer having active regions defined by isolation trenches. The device includes a gate defining a channel interposed between a source and a drain formed within the active region of the SOI substrate. Further, the device includes a plurality of thin silicide layers formed on the source and the drain. Additionally, at least an upper silicide layer of the plurality of thin silicide layers extends beyond a lower silicide layer. Further still, the device includes a plurality of spacers used in the formation of the device. The device further includes a second plurality of thin silicide layers formed on a polysilicon electrode of the gate.
Abstract:
A silicon-on-insulator (SOI) transistor. The SOI transistor includes a germanium implanted source and drain having a body disposed therebetween, and a gate disposed on the body, the germanium being implanted at an angle such that the source has a concentration of germanium at a source/body junction and the gate shields germanium implantation in the drain adjacent a drain/body junction resulting in a graduated drain/body junction. Also disclosed is a method of fabricating the SOI transistor.
Abstract:
A method of manufacturing an integrated circuit may include the steps of forming a deep amorphous region and doping the deep amorphous region. The doping of the deep amorphous region can form source and drain regions with extensions. After doping, the substrate is annealed. The annealing can occur at a low temperature. The deep amorphous region can be formed with a self-amorphizing implant.
Abstract:
A method of fabricating an integrated circuit with a source side compensation implant utilizes tilt-angle implants. An asymmetric channel profile is formed in which less dopants are located on a source side. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS).
Abstract:
An integrated circuit and method of fabricating integrated circuits is provided for an integrated circuit having threshold voltage adjustment. Unlike conventional methods and devices, threshold voltage adjustment is provided by an inert ion implantation process whereby inert ions are implanted into an underlying substrate. The implantation forms a semi-insulative layer comprised of an accumulation of inert ions. The inert ion region is formed between source and drain regions of a device on the integrated circuit. During operation of the device, the accumulation region confines the depth of the depletion layer. By confining the depth of the depletion layer, the threshold voltage of the device is reduced.
Abstract:
An ultra-large scale integrated (ULSI) circuit includes MOSFETs which have a gate conductor with dopants distributed in a box-like distribution. The dopants also achieve high electrical activation. The MOSFETs utilize gate structures with heavily doped polysilicon material or heavily doped polysilicon and germanium material. The polysilicon and polysilicon and germanium materials are manufactured by utilizing amorphous semiconductor layers. Excimer laser annealing is utilized to activate the dopants and to provide a box-like dopant profile.
Abstract:
A field effect transistor is fabricated to have a drain overlap and a source overlap to minimize series resistance between the gate and the drain and between the gate and the source of the field effect transistor. The parasitic Miller capacitance formed by the drain overlap and the source overlap is reduced by forming a depletion region at the sidewalls of the gate structure of the field effect transistor. The depletion region at the sidewalls of the gate structure is formed by counter-doping the sidewalls of the gate structure. The sidewalls of the gate structure at the drain side and the source side of the field effect transistor are doped with a type of dopant that is opposite to the type of dopant within the gate structure. Such dopant at the sidewalls of the gate structure forms a respective depletion region from the sidewall into approximately the edge of the drain overlap and source overlap that extends under the gate structure to reduce the parasitic Miller capacitance formed by the drain overlap and the source overlap.
Abstract:
An improved semiconductor device, such as a MOSFET with raised source/drain extensions on a substrate with isolation trenches etched into the surface of the substrate . The device has thin first dielectric spacers on the side of a gate and gate oxide and extend from the top of the gate to the surface of the substrate. Raised source/drain extensions are placed on the surface of a substrate, which extend from the first dielectric spacers to the isolation trenches. Thicker second dielectric spacers are placed adjacent to the first dielectric spacers and extend from the top of the first dielectric spacers to the raised source/drain extensions. Raised source/drain regions are placed on the raised source/drain extensions, and extend from the isolation trenches to the second dielectric spacers. The semiconductor device has very shallow source drain extensions which result in a reduced short channel effect.
Abstract:
A method of manufacturing an integrated circuit utilizes solid phase epitaxy to form an elevated source and an elevated drain region. The method includes providing an amorphous semiconductor material, doping the amorphous material at a source location and drain location and crystallizing the amorphous semiconductor material via solid phase epitaxy. The semiconductor material can be silicided. A shallow source drain implant can also be provided.