摘要:
A double gate germanium metal-oxide semiconductor field-effect transistor (MOSFET) includes a germanium fin, a first gate formed adjacent a first side of the germanium fin, and a second gate formed adjacent a second side of the germanium fin opposite the first side. A triple gate MOSFET includes a germanium fin, a first gate formed adjacent a first side of the germanium fin, a second gate formed adjacent a second side of the germanium fin opposite the first side, and a top gate formed on top of the germanium fin. An all-around gate MOSFET includes a germanium fin, a first sidewall gate structure formed adjacent a first side of the germanium fin, a second sidewall gate structure formed adjacent a second side of the germanium fin, and additional gate structures formed on and around the germanium fin.
摘要:
A semiconductor device may include a substrate and an insulating layer formed on the substrate. A fin may be formed on the insulating layer. The fin may include a side surface and a top surface, and the side surface may have a orientation. A first gate may be formed on the insulating layer proximate to the side surface of the fin.
摘要:
A double-semiconductor device includes a substrate, an insulating layer, a fin and a gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The fin has a number of side surfaces, a top surface and a bottom surface. The gate is formed on the insulating layer and surrounds the top surface, bottom surface and the side surfaces of the fin in the channel region of the semiconductor device. Surrounding the fin with gate material results in an increased total channel width and more flexible device adjustment margins.
摘要:
A narrow channel FinFET is described herein with a narrow channel width. A protective layer may be formed over the narrow channel, the protective layer being wider than the narrow channel.
摘要:
A method of fabricating an integrated circuit with ultra-shallow source/drain junctions utilizes a dummy or sacrificial gate structure. Dopants are provided through the openings associated with sacrificial spacers to form the source and drain extensions. The openings can be filled with spacers The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS).
摘要:
A semiconductor device includes a group of fin structures. The group of fin structures includes a conductive material and is formed by growing the conductive material in an opening of an oxide layer. The semiconductor device further includes a source region formed at one end of the group of fin structures, a drain region formed at an opposite end of the group of fin structures, and at least one gate.
摘要:
A method of forming a semiconductor device includes forming a fin on an insulating layer, where the fin includes a number of side surfaces, a top surface and a bottom surface. The method also includes forming a gate on the insulating layer, where the gate has a substantially U-shaped cross-section at a channel region of the semiconductor device.
摘要:
A double-gate semiconductor device includes a substrate, an insulating layer, a fin, source and drain regions and a gate. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. The source region is formed on the insulating layer adjacent a first side of the fin and the drain region is formed on the second side of the fin opposite the first side. The source and drain regions have a greater thickness than the fin in the channel region of the semiconductor device.
摘要:
A method of forming a gate in a FinFET device includes forming a fin on an insulating layer, forming source/drain regions and forming a gate oxide on the fin. The method also includes depositing a gate material over the insulating layer and the fin, depositing a barrier layer over the gate material and depositing a bottom anti-reflective coating (BARC) layer over the barrier layer. The method further includes forming a gate mask over the BARC layer, etching the BARC layer, where the etching terminates on the barrier layer, and etching the gate material to form the gate.
摘要:
A device and method for making a semiconductor-on-insulator (SOI) structure having a leaky, thermally conductive material (LTCIM) layer disposed between a semiconductor substrate and a semiconductor layer.