Abstract:
A magnesium halide adduct represented by the formula (I): MgX2.mROH.nE.pH2O, in which X is chlorine, bromine, a C1-C12 alkoxy, a C3-C10 cycloalkoxy or a C6-C10 aryloxy, with the proviso that at least one X is chlorine or bromine; R is a C1-C12 alkyl, a C3-C10 cycloalkyl or a C6-C10 aryl; E is an o-alkoxybenzoate compound represented by the formula (II): in which R1 and R2 groups are independently a C1-C12 linear or branched alkyl, a C3-C10 cycloalkyl, a C6-C10 aryl, a C7-C10 alkaryl or an C7-C10 aralkyl, the R1 and R2 groups are identical to or different from the R group; m is in a range of from 1.0 to 5.0; n is in a range of from 0.001 to 0.5; and p is in a range of from 0 to 0.8, is disclosed. A catalyst component useful in olefin polymerization, which comprises a reaction product of (1) the magnesium halide adduct, (2) a titanium compound, and optionally (3) an electron donor compound, is also disclosed.
Abstract:
This disclosure describes techniques for signaling and processing information indicating simplified depth coding (SDC) for depth intra-prediction and depth inter-prediction modes in a 3D video coding process, such as a process defined by the 3D-HEVC extension to HEVC. In some examples, the disclosure describes techniques for unifying the signaling of SDC for depth intra-prediction and depth inter-prediction modes in 3D video coding. The signaling of SDC can be unified so that a video encoder or video decoder uses the same syntax element for signaling SDC for both the depth intra-prediction mode and the depth inter-prediction mode. Also, in some examples, a video coder may and/or process a residual value generated in the SDC mode using the same syntax structure, or same type of syntax structure, for both the depth intra-prediction mode and depth inter-prediction mode.
Abstract:
In one example, a device for receiving information for multimedia data, the device comprising one or more processors configured to analyze at least a portion of a manifest file for multimedia content, wherein the portion of the manifest file includes information indicative of sets of representations of the multimedia content and information indicative of common characteristics for each of the sets of representations, select one of the sets of representations based on the common characteristics for the one of the sets of representations, select one of the representations of the selected one of the sets of representations based on one or more coding characteristics of the one of the representations of the one of the sets, and generate a request for data of the one of the representations based on the selection.
Abstract:
In an example, a process for coding video data includes determining a partitioning pattern for a block of depth values comprising assigning one or more samples of the block to a first partition and assigning one or more other samples of the block to a second partition. The process also includes determining a predicted value for at least one of the first partition and the second partition based on the determined partition pattern. The process also includes coding the at least one of the first partition and the second partition based on the predicted value.
Abstract:
Aspects of this disclosure relate to a method of coding video data. In an example, the method includes identifying a first block of video data in a first temporal location from a first view, wherein the first block of video data is associated with a first temporal motion vector. The method also includes determining, when a second motion vector associated with a second block of video data comprises a temporal motion vector and the second block is from a second view, a motion vector predictor for the second motion vector based on the first temporal motion vector. The method also includes coding prediction data for the second block using the motion vector predictor.
Abstract:
An asymmetric frame of a coded video bitstream may include a full resolution picture of a left view and a reduced resolution picture of a right view, where the left and right views form a stereo view pair for three-dimensional video playback. In one example, an apparatus includes a video encoder configured to receive a first picture of a first view of a scene having a first resolution, receive a second picture of a second view of the scene having a reduced resolution relative to the first resolution, form an asymmetric frame including the first picture and the second picture, and encode the asymmetric frame. In this manner, decoders of varying capabilities may receive the same bitstream, and the bitstream may consume less bandwidth than one or more bitstreams having full resolution pictures of a stereo view pair. The bitstream may have better quality than a bitstream having subsampled pictures.
Abstract:
A process for producing boron nitride nanotubes and nanotube films, which process comprises heating a liquid composition comprising boron particles and a metal compound, wherein heating takes place at a temperature of from 800-1300° C. in a gaseous atmosphere containing nitrogen that causes boron nitride nanotubes to grow, and wherein the boron particles have an average particle size of less than 100 nm, and wherein the metal compound is selected such that it promotes the growth of boron nitride nanotubes during heating.
Abstract:
In one example, a device for coding video data includes a video coder configured to determine, for a depth block of a depth component of video data, a co-located texture block of a corresponding texture component, and when at least a portion of the texture block corresponds to a prediction unit of the texture component that is not intra-prediction coded: disable an inter-component Wedgelet depth modeling mode for the depth block, select an intra-prediction coding mode for the depth block other than the disabled inter-component Wedgelet depth modeling mode, and code the depth block using the selected intra-prediction coding mode.
Abstract:
Prostate-specific membrane antigen (PSMA) targeting compounds are described. Uses of the compounds for imaging, therapy, cell sorting, and tumor mapping are also described.
Abstract:
Fast restoration of referential integrity between metadata and data after they were restored to some inconsistent backup copies in content management archival solutions. An inferred logging mechanism uses separate metadata and data logs to capture recent update activities during normal system conditions with additional object reference information using a method called reference tagging. This requires no system internal changes and introduces no performance overhead. The information in the logs facilitates quick identification of potential referential inconsistencies and allows referential integrity between metadata and data to be restored in a fraction of the time when compared to exhaustive data scans.