Abstract:
In a nonvolatile memory, the select gates (144S) are formed from one conductive layer (e.g. polysilicon or polyside), and the wordlines (144) interconnecting the select gates are made from a different conductive layer (e.g. metal). The wordlines overlie an interlevel dielectric (310) formed over control gates (134). The dielectric thickness can be controlled to reduce the capacitance between the wordlines and the control gates. In some embodiments, the floating gates (120) are fabricated in a self-aligned manner using an isotropic etch of the floating gate layer.
Abstract:
In a nonvolatile memory, the select gates (144S) are formed from one conductive layer (e.g. polysilicon or polyside), and the wordlines (144) interconnecting the select gates are made from a different conductive layer (e.g. metal). The wordlines overlie an interlevel dielectric (310) formed over control gates (134). The dielectric thickness can be controlled to reduce the capacitance between the wordlines and the control gates. In some embodiments, the floating gates (120) are fabricated in a self-aligned manner using an isotropic etch of the floating gate layer.
Abstract:
The present invention provides a method for preventing doped boron in a dielectric layer from diffusing into a substrate. First, at least one gate is formed on a periphery circuit area and a memory array area of a substrate, respectively, wherein the pattern density in the memory array area is higher than that in the periphery circuit area. Then, a barrier layer is formed on the memory array area and the periphery circuit area, and an undoped oxide barrier is formed on the periphery circuit area. Finally, a silicate glass containing boron is deposited on the memory array area and the periphery circuit area.
Abstract:
Silicon oxide (210) is grown on a silicon region (130). At least a portion (210N) of the silicon oxide (210) adjacent to the silicon region (130) is nitrided. Then some of the silicon oxide (210) is removed, leaving the nitrided portion (210N). Additional silicon oxide is thermally grown on the silicon region (130) under the nitrided silicon oxide portion (210N). This additional silicon oxide and the nitrided portion (210N) form a silicon oxide layer (140) having a high nitrogen concentration adjacent to a surface opposite from the silicon region (130) and a low nitrogen concentration elsewhere. Another nitridation step increases the nitrogen concentration in the silicon oxide layer (140) adjacent to the silicon region, providing a double peak nitrogen profile.
Abstract:
A memory device that includes a semiconductor substrate, and an array of memory cells, each cell being electrically isolated from adjacent cells and including an island formed from the substrate, the island having a top portion and at least one sidewall portion, and being spaced apart from other islands by a bottom surface on the substrate, a capacitor formed contiguous with the sidewall portion, and a transistor formed on the top portion of the island, the transistor including a gate oxide layer formed on a surface of the top portion, a gate formed on the gate oxide layer, and a first and a second diffused regions formed in the top portion, the first diffused region being spaced apart from the second diffused region.
Abstract:
A flash memory structure comprises a silicon substrate having at least one concave structure, two doped regions positioned in the semiconductor substrate and at two sides of the concave structure, at least one carrier trapping region positioned in the concave structure, and a conductive layer positioned above the concave structure. The concave structure comprises two grooves having a U-shaped or V-shaped profile. The grooves have an inclined plane with (111) orientation and a bottom plane with (100) orientation of the silicon substrate. The carrier trapping region comprises a dielectric stack positioned in the concave structure, wherein the dielectric stack comprises a first oxide layer positioned on the surface of the silicon substrate, a nitride block positioned on the surface of the first oxide layer and in the concave structure, and a second oxide layer covering the first oxide layer and the nitride block.
Abstract:
A flash memory structure comprises a semiconductor substrate having a V-groove, a first doped region positioned in the semiconductor substrate, two second doped regions positioned in the semiconductor substrate and at two sides of the V-groove, a dielectric stack having trapping sites interposed therein positioned on the V-groove, and a conductive layer positioned on the surface of the dielectric stack above the V-groove. A method for forming the V-groove comprises steps of forming a mask layer on the surface of the semiconductor substrate, forming an opening in the mask layer, etching a portion of the semiconductor substrate below the opening to form the V-groove, and removing the mask layer. The semiconductor substrate can be a (100)-oriented silicon substrate, and the V-groove has inclined surface planes with (111) orientation.
Abstract:
Fabrication of a bottle-shaped trench is disclosed. A semiconductor substrate with a trench therein is provided. An ion-doped barrier layer is formed in the trench, exposing the upper portion surfaces of the sidewall of the trench. An ion implantation is performed on the upper portion surfaces of the sidewall of the trench to reduce the oxidation rate in the substrate near the upper portion of the trench. The ion-doped barrier layer is removed, exposing the lower portion and bottom surfaces of the sidewall of the trench. A thermal oxidation treatment is performed, forming an oxide layer on the surface of the trench. The thickness of the oxide layer on the upper portion of the sidewall surface is much thinner than that of the oxide layer on the lower portion of the sidewall surface or that of the bottom surface. A bottle-shaped trench is formed by removing the oxide layer.
Abstract:
A method for fabricating a semiconductor device is described. A gate dielectric layer is formed on a substrate, and several gate structures having a gate conductor, a cap layer and spacers are formed on the gate dielectric layer. A mask layer is formed over the substrate covering a portion of the gate structures. Removing the cap layer and spacers that are not covered by the mask layer. After the mask layer is removed, a dielectric layer is formed over the substrate covering the gate structures. A self-aligned contact hole is formed in the dielectric layer. A conductive layer is formed in the self-aligned contact hole and on the dielectric layer. Since the cap layer and spacers that are not covered by the mask layer are removed and substituted by the dielectric layer having lower dielectric constant property, the parasitic capacitance can be reduced.
Abstract:
A run-to-run control system and a run-to-run controlling method are proposed. The tool process parameters are real-time collected during the semiconductor process is performed and are regarded as the effective factors in the process for providing an optimal operation variables to the tool for the next process run. After modeling the metrology parameters with a set of the tool process parameters with respect to the semiconductor process for its corresponding process run, a set of optimal operation variables is determined by the controller and output to the tool to modify the process recipe of the process. Hence, the process recipe is real-time changed with the process environment to obtain the optimal process performance.