Abstract:
Circuitry and method for dividing the frequency of an input clock signal for use in a prescaler of a digital frequency synthesizer. A flip flop is clocked on a first type of edge of the input clock signal, and provides an output for use as a divided clock signal. Feedback circuitry is clocked on the first type of edge of the input clock signal and provides a signal to a data input of the flip flop based on the inverse of the output of the flip flop.
Abstract:
A first sensing circuit has input terminals coupled to a true differential signal line and a complementary differential signal line. A second sensing circuit also has input terminals coupled to said true signal and said complementary signal. Each sensing circuit has a true signal sensing path and a complementary signal sensing path. The first sensing circuit has an imbalance that is biased towards the complementary signal sensing path, while the second sensing circuit has an imbalance that is biased towards the true signal sensing path. Outputs from the first and second sensing circuits are processed by a logic circuit producing an output signal that is indicative of whether there a sufficient differential signal for sensing has been developed between the true differential signal line and the complementary differential signal line.
Abstract:
An intensity of radiation emitted from at least two laser diodes of a projecting apparatus is optimized by providing an offset distance between at least two focal points of the at least two laser diodes and providing a maximum value for radiation intensity emitted by each of the laser diodes, irrespective of simultaneous transmission by one of the laser diodes with another of the laser diodes. The intensity of the radiation emitted from each of the at least two laser diodes is adjusted such that an aggregated value of the radiation intensity emitted by all of the laser diodes within a predefined period of time may exceed a threshold value allowed for the maximum permissible exposure to radiation.
Abstract:
A system for testing multi-clock domains in an integrated circuit (IC) includes a plurality of clock sources coupled to a plurality of clock controllers. Each of the clock sources generates a fast clock associated with one of the multi-clock domains. Each of the clock controllers is configured to provide capture pulses to test one clock domain. The capture pulses provided to a clock domain are at a frequency of a fast clock associated with the clock domain. The clock controllers operate sequentially to provide the capture pulses to test the clock domains.
Abstract:
A circuit includes a differential amplifier having a folded cascode architecture with a pair of cascode transistors. A sensing circuit senses a common mode input voltage of a differential input signal applied to the differential amplifier. A bias generator circuit generates a bias voltage for application to the pair of cascode transistors in the folded cascode architecture. The bias generator circuit is connected to an output of the sensing circuit such that the generated bias voltage has a value which is dependent on the sensed common mode input voltage. This dependence stabilizes a common mode output voltage from the differential amplifier in response to changes in the common mode input voltage.
Abstract:
A memory circuit includes a first memory cell node capacitor, a first memory cell node transistor, a second memory cell node having a second memory cell node capacitor and a second memory cell node transistor, and a pre-charging circuit for pre-charging the first and second memory cell nodes to first and second voltage levels, respectively. The circuit includes a reference memory cell having first and second reference cell transistors with an equalizing transistor between, and a sense amplifier that detects a potential difference between reference bit lines from the reference memory cell and the first or second memory cell node, respectively. The reference cell transistors and equalizing transistor perform a first voltage equalization of the memory cell nodes at a predetermined voltage and a second voltage equalization of the memory cell nodes based on first or second reference signals respectively input to the first or second reference cell transistor.
Abstract:
A system on chip (SoC) has a digital domain. An adaptive voltage/frequency scaling circuit includes a critical path replica circuit with respect to that digital domain. The critical path replica circuit generates a margin signal, and the adaptive voltage scaling circuit responds to the margin signal by decreasing bias voltage (and/or increasing clock frequency) applied to the digital domain of the system on chip so as to recover available margin. A fail-safe timing sensor is included within the digital domain of the system on chip. The timing sensor generates a flag signal when timing criteria within the digital domain are violated. The adaptive voltage scaling circuit responds to the flag signal by increasing the bias voltage (and/or decreasing the clock frequency) applied to the digital domain of the system on chip so as to implement a recovery operation.
Abstract:
A write boost circuit provides an automatic mode control for boost with different modalities with respect to the external supply voltage and also with respect to the extent of boost required at different process corners. The write boost circuit also takes care of the minimum boost provided to process corners with good writability where less boost is required. The boost is realized in terms of ground raising in the particular context and in general applicable to all other methods.
Abstract:
An IO buffer module optimized for a wide range of drive levels both in terms of area and performance that includes an IO cell module and at least one IO adder module operatively coupled to said IO cell module for enabling the IO buffer module for the wide range of drive levels. The IO adder module can be added with the IO cell module in a number of different combinations for providing the wide range of drive levels, and the IO buffer module can provide drive solutions from 1 mA to 10 mA or higher, in steps of 0.5 mA drive level.
Abstract translation:IO面板和性能方面针对广泛的驱动器级别进行了优化的IO缓冲器模块,包括IO单元模块和至少一个IO加法器模块,可操作地耦合到所述IO单元模块,以使IO缓冲模块能够在宽范围 驱动级别。 IO加法器模块可以以多种不同的组合添加IO单元模块,以提供宽范围的驱动电平,并且IO缓冲模块可以提供从1 mA到10 mA或更高的驱动解决方案,步长为0.5 mA 驱动级别。
Abstract:
A low pin interface module is provided for testing an integrated circuit. The interface module includes an input-output module, a controlling module, a processing module and a storage module specific to the integrated circuit to be tested. The interface module reduces the required number of hardware pins in the integrated circuit for a standalone testing without limiting the integrated circuit testing features. A methodology and a control mechanism achieved with the interface module can be used for the standalone testing of any integrated circuit without using a Joint European Test Action Group test logic interface JTAG implemented following the IEEE Standard 1149.1-1990. The interface module is not limited by a particular debugging platform and allows access to all test features in the integrated circuit with a reduced number of hardware pins and thereby leading to enhanced testing speeds on a tester in parallel and a shorter time-to-a market cycle and a lower development cost.