Abstract:
A system for reducing biological organisms in a liquid effluent to non-viable organic molecules that includes: a stunning chamber that applies a voltage potential across biological organisms to break cell membranes and disable the defense mechanisms of vital organisms to ultraviolet radiation; a cavitation chamber to physically destroy any remaining membranes of biologicals in the effluent that may play host to vital organisms or allow such to hide therein, the action of the stunning and cavitation chambers releasing interferons; and a molecularly implanted stimulated emitter (MISE) chamber in which high levels of ultraviolet radiation are applied to virions and spores that remain at frequencies that are readily absorbed and operate to disassociate any viable DNA and RNA strands remaining, to thereby cause “death”. Prior to the stunning chamber, preferably the effluent has any large solids therein, settled, floated or filtered out. When potable water is to be produced, heavy metals and other common inorganic contaminants are also removed. The resulting effluent is pulsed through the stunning, cavitation, and MISE chambers to gain maximum effect thereof. Once the DNA and RNA strands have been disassociated in the MISE chamber, the environment of the downstream flow is controlled to prevent reassociation of organic molecules into viable DNA or RNA strands by either diluting the output of the MISE chamber to such an extent that organic molecules are unlikely to recombine, or when drinking water is to be produced, by filtering the organic filtering the organic molecules out for cosmetic purposes.
Abstract:
A fully automatic deionizer comprising five sub-systems for removing ionic contaminants from various liquids at low energy consumption is devised. Based on the charging-discharging principle of capacitors, the deionizer conducts deionization through applying a low DC voltage to its electrodes for adsorbing ions, while more than 30% of the process energy is recovered and stored by discharging the electrodes. At the mean time of discharge, surface of the electrodes is regenerated on site and reset for performing many more cycles of deionization-regeneration till the desirable purification is attained. In one moment, both deionization and regeneration proceed simultaneously on different groups of electrode modules, and in the next moment the electrode modules quickly switch the two processes. Such swift reciprocating actions are engaged in synchronized coordination of sub-systems of electrode modules, energy management, fluid flow, and automatic control.
Abstract:
Disclosed is a process for recovery of cyanide and metals from a liquor containing complexes of cyanide and metal typically generated by a metallurgical or industrial process. The process involves electrochemical dissociation of the metal-cyanide complex and electrowinning of the metal while free cyanide generated in the process is recovered in a membrane treatment step for re-use in a metallurgical process utilising it. An electrochemical apparatus, which may be used in the process, forms a further aspect of the invention. A membrane process alone, for separation of cyanide, from liquors containing cyanide complexes is a further aspect of the invention.
Abstract:
A device and method for removal of minerals from a supply of liquid such as water. The device includes a tank with an inner surface functioning as a first electrode, at least one inlet for liquid and at least one outlet to a system requiring liquid arranged such that entry and exit of liquid create a cyclonic flow, at least one second electrode within the tank placed so that the cyclonic flow of liquid passes between the two electrodes, and a mechanism for creating an electric current flowing between the two electrodes. The method includes the steps of causing a liquid to circulate cyclonically within a tank, applying an electric current to the circulating liquid so that minerals within the liquid precipitate on an inner surface of the tank, and reversing a polarity of the electric current in order to loosen the precipitated minerals from the inner surface of the tank.
Abstract:
A method for purifying water characterized in that a chamber is separated by a diaphragm into an anode section and a cathode section, a voltage is applied between the anode and the cathode while an oxygen-containing gas is supplied to the cathode section so as to generate a hypohaloric acid and hydrogen peroxide in the anode and cathode sections, respectively, and the water to be treated is first supplied to the anode section to be contacted with the hypohaloric acid and is then introduced to the cathode section to be contacted with the hydrogen peroxide.
Abstract:
The invention relates to an apparatus for generating ozone, oxygen, hydrogen, and/or other products of water electrolysis, having an electrolyte cell that can be acted upon by water, the water being delivered and carried away in a supply line communicating with the electrolyte cell, wherein a bypass line is embodied around the supply line, and the electrolyte cell can be connected via the bypass line to the supply line and subjected to water from the supply line, and a valve engaging the supply line and the bypass line is provided, and by means of the valve, the supply line and the bypass line can be opened and/or closed.
Abstract:
An electrolytic treatment apparatus includes a substantially hollow tubular outer vessel housing closed at its bottom end and provided with a liquid inlet and liquid outlet adjacent its bottom and top ends. A self-contained reactor cartridge unit integrates the vessel cap, electrodes, electrode supports, any electrode wiring connections and any liquid dispersion members into a single removable unit for installation into and removal from the vessel housing so that, when maintenance is required, complete reactor cartridges may be exchanged in a matter of seconds, thereby virtually eliminating downtime of the treatment system for maintenance and other electrode replacement needs.
Abstract:
The manufacturing apparatus for producing alkaline ionized water and acidic water by electrolysis of water has an electrolytic bath including a cathode cell, an intermediate cell, and an anode cell, separated by diaphragms; an electrolysis solution bath connected to the intermediate cell via an electrolysis solution circulating line and an electrolysis solution circulating pump; a circulation container bath for alkaline ionized water connected to the cathode cell via an alkaline ionized water circulating line and an alkaline ionized water circulating pump; a supplying line for raw material water for producing acidic water connected to an inlet of the anode cell; a withdrawing line for acidic water connected to an outlet of the anode cell; a supplying system for raw material water for making the alkaline ionized water connected to the circulation container bath and a withdrawing line with a water collecting device for withdrawing alkaline ionized water.
Abstract:
A free-standing flow-through capacitor (FTC) is constructed by concentrically winding two electrodes and two dividers into a hollow-center roll. A liquid-feeding pipe is inserted to the central opening for delivering fluids to the FTC. Nanoparticles of hydrated iron compound with Fe3O4 as the main component or its composite powders are used as the active materials for the electrodes. With channels crated by the dividers assembled in the roll, fluids injected from the feed pipe are confined inside the FTC, and flow outwardly and transversely through the entire length of the electrodes. Under an application of a low DC voltage to the electrodes, charged species are adsorbed and removed from the treated liquids as soon as they are in contact with the electrodes. Capacitive deionization using FTC of the present invention is applicable to waste-streams reduction, water purification and desalination at low costs and easy operation.
Abstract:
An apparatus for decontamination contaminated groundwater in-situ by increasing the quantity of dissolved oxygen in the contaminated groundwater and generating reactive initiators to remediate the contaminated groundwater. The apparatus includes a submersible pump, an electrolytic cell, a chlorine filter, and a distribution chamber. The distribution chamber is vertically oriented and longitudinally-extending from the outlet of the cell. As the groundwater flows across charging plates of the cell, some of the molecules break into their component parts of hydrogen gas and oxygen gas. A selected vertical length of the chamber provides a resident time for the fluid allowing a majority of the gaseous oxygen to transition to dissolved oxygen.