Abstract:
Systems, devices, methods, and compositions are described for providing an actively controllable implant configured to, for example, monitor, treat, or prevent microbial growth or adherence to the implant.
Abstract:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured to perform vehicular threat detection based on information received at a road-based device, such as a sensor or processor that is deployed at the side of a road. An example AEFS receives, at a road-based device, information about a first vehicle that is proximate to the road-based device. The AEFS analyzes the received information to determine threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
Abstract:
Embodiments disclosed herein relate to methods, devices, and computer systems thereof for visibly or non-visibly indicating a subject has received a medical treatment. In certain embodiments, a subject receives an information mark in conjunction with a medical treatment. In certain embodiments, the information mark includes unique information relating to the subject. In certain embodiments, devices, computer systems, and methods relate to reading an information mark on a subject, and optionally determining if further medical treatment of the subject is warranted. In certain embodiments, receipt of an information mark entitles a subject to a reward.
Abstract:
Systems and methods for dynamically defending a site from lightning strikes are provided. The systems and methods involve dynamically altering electrostatic fields above the site and/or dynamically intervening in lightning discharge processes in the vicinity of the site.
Abstract:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance voice conferencing among multiple speakers. Some embodiments of the AEFS enhance voice conferencing by recording, translating and presenting voice conference history information based on speaker-related information, wherein the translation is based on language identification using multiple speech recognizers and GPS information. The AEFS receives data that represents utterances of multiple speakers who are engaging in a voice conference with one another. The AEFS then determines speaker-related information, such as by identifying a current speaker, locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AEFS records conference history information (e.g., a transcript) based on the determined speaker-related information. The AEFS then informs a user of the conference history information, such as by presenting a transcript of the voice conference and/or related information items on a display of a conferencing device associated with the user.
Abstract:
The present invention may include measuring energy usage of one or more appliances for a selected usage metric, receiving reference energy usage data indicative of energy usage of one or more reference appliances for the selected usage metric, comparing the measured energy usage of the one or more appliances for the selected usage metric to the one or more received sets of reference energy usage data for the selected usage metric, and reporting an amount of energy savings based on the comparison of measured energy usage of the one or more appliances and the one or more received sets of reference energy data.
Abstract:
Methods, apparatuses, computer program products, devices and systems are described that carry out accepting at least one social network message from at least one member of a network; disambiguating the at least one search term including associating the at least one search term with at least one of network-participation identifier data or device-identifier data; and presenting the sender profile in association with the at least one.
Abstract:
A cooling system for a subterranean power line may include a cooling tube configured to house a fluid. Heat generated by the subterranean power line may be radiated and/or conducted to the cooling tube and absorbed by the fluid within the cooling tube. As the fluid heats up, it may change phase from a liquid to a gas. The hot gas may rise to a heat-exchanging condenser configured to dissipate the heat and condense the fluid back into a liquid. The cool, condensed liquid my return from the heat-exchanging condenser to the cooling tube. Risers, gas transport tubes, pressure regulation systems, fluid storage tanks, and other components described herein may increase the efficiency of the cooling system and/or otherwise improve the viability of the cooling system for subterranean power lines.
Abstract:
A support system for supporting one or more transmission lines and for mitigating sagging or swinging of the transmission lines may comprise support lines coupled to the transmission lines by adjustable risers. The adjustable risers may be dynamically adjustable in length to compensate for the sagging or swinging of the transmission lines. Various embodiments of the adjustable risers, support lines, and support system are contemplated. These embodiments may include adjustment mechanisms, sensors, shock absorbers, positioning mechanisms, zero gap connections, guy wires, lateral members, and various different arrangements of the elements.
Abstract:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured perform vehicular threat detection based at least in part on analyzing audio signals. An example AEFS receives data that represents an audio signal emitted by a vehicle. The AEFS analyzes the audio signal to determine vehicular threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined vehicular threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.