Abstract:
An apparatus and method of producing methanol includes reacting a heated hydrocarbon-containing gas and an oxygen-containing gas in a reactor; to provide a product stream comprising methanol; and transferring heat from the product stream to the hydrocarbon-containing gas to heat the hydrocarbon containing gas. After removing methanol and CO2 from the product stream, unprocessed hydrocarbons are mixed with the hydrocarbon containing gas fro reprocessing through the reactor.
Abstract:
An apparatus and method of producing methanol includes reacting a heated hydrocarbon-containing gas and an oxygen-containing gas in a reactor; to provide a product stream comprising methanol; and transferring heat from the product stream to the hydrocarbon-containing gas to heat the hydrocarbon containing gas. After removing methanol and CO2 from the product stream, unprocessed hydrocarbons are mixed with the hydrocarbon containing gas for reprocessing through the reactor. Reactor byproducts are injected into the ground to increase the output of a hydrocarbon producing well.
Abstract:
A reactor system for gas phase reacting of at least two fluid feed streams, where the reactor system has an injectively-mixed backmixing reaction chamber in fluid communication with a tubular-flow reactor. The injectively-mixed backmixing reaction chamber has a bulkhead that slides during real-time operation to either diminish or expand the internal volume of the backmixing reaction chamber. In one embodiment, the effective passageway space through the bulkhead is also variably adjustable. In another embodiment, the tubular-flow reactor shares the bulkhead so that axial bulkhead movement commensurately expands one reaction space while diminishing the other reaction space. Input gas streams enter the backmixing reaction chamber with sufficient velocity to turbulently agitate the contents of the injectively-mixed backmixing reaction chamber by injective intermixing of the alkane-containing gas feed stream and the oxygen-containing gas feed stream. A focal application is for direct (partial) oxidative conversion of natural gas to alkyl oxygenates.
Abstract:
An apparatus and method of producing methanol includes reacting a heated hydrocarbon-containing gas and an oxygen-containing gas in a reactor; to provide a product stream comprising methanol; and transferring heat from the product stream to the hydrocarbon-containing gas to heat the hydrocarbon containing gas. After removing methanol and CO2 from the product stream, unprocessed hydrocarbons are mixed with the hydrocarbon containing gas fro reprocessing through the reactor.
Abstract:
A methane purification system includes one or more components that cool and compress an input methane-containing gaseous mixture stream to form a first methane-containing gaseous mixture stream. A filter-separator in fluid communication with the one or more components receives the first methane-containing gaseous mixture stream removing water therefrom to form a second methane-containing gaseous mixture stream. An activated carbon station receives the second methane-containing gaseous mixture stream removing hydrogen sulfide therefrom to form a third methane-containing gaseous mixture stream. A methanol scrubber that receives the third methane-containing gaseous mixture stream or an expanded stream therefrom, removing carbon dioxide to form a fourth methane-containing gaseous mixture stream. A final stage separator produces a purified methane stream from the fourth methane-containing gaseous mixture stream or an expanded stream therefrom.
Abstract:
An integrated system for the conversion of biomass to renewable natural gas and then to methanol and other value-added products is provided. The integrated system includes a compressor that receives biomass gases from a biomass source and a series of purification stations that produce purified gas from the biomass gases. Characteristically, the purified gas has an enhanced amount of methane. A gas-to-liquids plant converts the purified gas to a product blend that includes methanol.
Abstract:
An electricity generator includes a generator section which is a complete standalone electricity generator designed to operate on a hydrocarbon fuel and a fuel conversion section which adapts the generator section to operate on alternative fuels that are different than the designed fuel of generator section. The generator section includes a RPM control unit, an internal combustion engine which has a crankshaft, an electromagnetic conversion component which converts the rotational motion of the crankshaft into electricity and a crankshaft sensor which senses the rotational speed of the crankshaft thereby creating a RPM control signal. The control signal is provided to the RPM control unit which controls the rotational speed of the crankshaft. The fuel conversion section includes a first fuel source and a second fuel source. Characteristically, the first fuel source provides a methanol-containing fuel and the second fuel source provides LPG or flare gas.
Abstract:
A fire suppression apparatus and method of generating foam are provided in which a foam-forming liquid is introduced under high velocity and pressure into a mixing manifold through a plurality of jets, and a non-combustible gas is introduced under high velocity and pressure into the center of the mixing manifold, downstream of the jets and in the direction of flow of the foam-forming liquid. The foam generated in the mixing manifold is discharged through a hose and nozzle connected to the mixing manifold. The apparatus may be a self-contained unit, supported on a frame, with its own supply of foam-forming liquid and non-combustible gas.
Abstract:
An apparatus and method of producing methanol includes reacting a heated hydrocarbon-containing gas and an oxygen-containing gas in a reactor; to provide a product stream comprising methanol; and transferring heat from the product stream to the hydrocarbon-containing gas to heat the hydrocarbon containing gas. After removing methanol and CO2 from the product stream, unprocessed hydrocarbons are mixed with the hydrocarbon containing gas for reprocessing through the reactor. Reactor byproducts are injected into the ground to increase the output of a hydrocarbon producing well.
Abstract:
An apparatus and method of producing methanol includes reacting a heated hydrocarbon-containing gas and an oxygen-containing gas in a reactor; to provide a product stream comprising methanol; and transferring heat from the product stream to the hydrocarbon-containing gas to heat the hydrocarbon containing gas. After removing methanol and CO2 from the product stream, unprocessed hydrocarbons are mixed with the hydrocarbon containing gas fro reprocessing through the reactor.