Abstract:
A method for forming a camera including an integrated optical subsystem, includes aligning a plurality of second dies with a plurality of first dies, each first die having a second die aligned therewith, at least one of the plurality of first dies and the plurality of the second dies include a corresponding number of optical elements, securing aligned dies, and dividing secured aligned dies into a plurality of portions, a portion containing a first die, a second die and at least one optical element, thereby forming the integrated optical subsystem.
Abstract:
A monolithic polarizing diffractive structure includes a system having at least two parallel continuous planar surfaces, a diffractive pattern on one of the at least two parallel continuous surfaces, the diffractive pattern including at least two diffractive elements integral with the one of the at least two continuous surfaces, the at least two diffractive elements defining a monolithic diffractive pattern, and a polarizing pattern on one of the at least two parallel continuous surfaces. The polarizing pattern includes at least two polarizing elements, each polarizing element corresponding to a respective diffractive element, the at least two polarizing elements outputting polarizations rotated with respect to one another, the at least two polarizing elements defining a monolithic polarizing pattern.
Abstract:
An optical system (302) has a plurality of optical surfaces (304, 305, 306, 307, 308, 309) configured to provide blurred images of objects located within a selected range of object distances. At least two of the plurality of optical surfaces are configured to contribute to the blurring. An imaging system (300) includes a blurring optical system (302), a sensor (310) which receives light directed through the optical system, and an image processor (320) which selects one or more deblurring functions and applies the deblurring functions to provide a processed image. The processor may apply different deblurring functions to different sets of the raw data representing different portions of the field of view.
Abstract:
An optical assembly includes a first transparent substrate having first and second surfaces, a second transparent substrate having substantially parallel third and fourth surfaces, a reflective portion on the second transparent substrate, a plurality of filters between the first substrate and the reflective portion, the plurality of filters filtering light beams incident thereon, the plurality of filters and the reflective portion forming a bounce cavity within the second transparent substrate, a collimating lens for collimating light beams to be input to the bounce cavity, a tilt mechanism for introducing tilt to light beams input to the bounce cavity; an input port receiving light beams and an output port transmitting light beams. The tilt mechanism may be between the first and second substrate.
Abstract:
An optical element may include a first diffractive structure having a radially symmetric amplitude function and a second diffractive structure having a phase function. The second diffractive structure may serve as a vortex lens. A system employing the optical element may include a light source and/or a detector.
Abstract:
An optical transceiver includes at least one light source and at least one detector mounted on the same surface of the same substrate. The detector is to receive light from other than a light source on the surface. At least one of the light source and the detector is mounted on the surface. An optics block having optical elements for each light source and detectors is attached via a vertical spacer to the substrate. Electrical interconnections for the light source and the detector are accessible from the same surface of the substrate with the optics block attached thereto. One of the light source and the detector may be monolithically integrated into the substrate.
Abstract:
A camera includes a first substrate having top and bottom surfaces, a second substrate having top and bottom surfaces, a spacer substrate between a substantially planar portion of the top surface of the second substrate and a substantially planar of the bottom surface of the first substrate, at least two of the first substrate, the second substrate and the spacer substrate sealing an interior space, a detector within the interior space, and an electrical interconnection extending from the detector to outside the interior space.
Abstract:
An optical transceiver includes at least one light source and at least one detector mounted on the same surface of the same substrate. The detector is to receive light from other than a light source on the surface. At least one of the light source and the detector is mounted on the surface. An optics block having optical elements for each light source and detectors is attached via a vertical spacer to the substrate. Electrical interconnections for the light source and the detector are accessible from the same surface of the substrate with the optics block attached thereto. One of the light source and the detector may be monolithically integrated into the substrate.
Abstract:
A microelectronic unit includes a semiconductor element having a front surface to which a packaging layer is attached, and a rear surface remote from the front surface. The element includes a light detector including a plurality of light detector element arranged in an array disposed adjacent to the front surface and arranged to receive light through the rear surface. The semiconductor element also includes an electrically conductive contact at the front surface connected to the light detector. The conductive contact includes a thin region and a thicker region which is thicker than the thin region. A conductive interconnect extends through the packaging layer to the thin region of the conductive contact, and a portion of the conductive interconnect is exposed at a surface of the microelectronic unit.
Abstract:
An optical assembly includes a first transparent substrate having first and second surfaces, a second transparent substrate having substantially parallel third and fourth surfaces, a reflective portion on the second transparent substrate, a plurality of filters between the first substrate and the reflective portion, the plurality of filters filtering light beams incident thereon, the plurality of filters and the reflective portion forming a bounce cavity within the second transparent substrate, a collimating lens for collimating light beams to be input to the bounce cavity, a tilt mechanism for introducing tilt to light beams input to the bounce cavity; an input port receiving light beams and an output port transmitting light beams. The tilt mechanism may be between the first and second substrate.