Abstract:
Some embodiments of the present invention include providing carbon doped regions and raised source/drain regions to provide tensile stress in NMOS transistor channels.
Abstract:
An embodiment of the invention reduces the external resistance of a transistor by utilizing a silicon germanium alloy for the source and drain regions and a nickel silicon germanium self-aligned silicide (i.e., salicide) layer to form the contact surface of the source and drain regions. The interface of the silicon germanium and the nickel silicon germanium silicide has a lower specific contact resistivity based on a decreased metal-semiconductor work function between the silicon germanium and the silicide and the increased carrier mobility in silicon germanium versus silicon. The silicon germanium may be doped to further tune its electrical properties. A reduction of the external resistance of a transistor equates to increased transistor performance both in switching speed and power consumption.
Abstract:
A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
Abstract:
A device is provided. The device includes a transistor formed on a semiconductor substrate, the transistor having a conduction channel. The device includes at least one edge dislocation formed adjacent to the conduction channel on the semiconductor substrate. The device also includes at least one free surface introduced above the conduction channel and the at least one edge dislocation.
Abstract:
Some embodiments of the present invention include providing carbon doped regions and raised source/drain regions to provide tensile stress in NMOS transistor channels.
Abstract:
A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
Abstract:
A process is described for manufacturing an improved PMOS semiconductor transistor. Recesses are etched into a layer of epitaxial silicon. Source and drain films are deposited in the recesses. The source and drain films are made of an alloy of silicon and germanium. The alloy is epitaxially deposited on the layer of silicon. The alloy thus has a lattice having the same structure as the structure of the lattice of the layer of silicon. However, due to the inclusion of the germanium, the lattice of the alloy has a larger spacing than the spacing of the lattice of the layer of silicon. The larger spacing creates a stress in a channel of the transistor between the source and drain films. The stress increases IDSAT and IDLIN of the transistor. An NMOS transistor can be manufactured in a similar manner by including carbon instead of germanium, thereby creating a tensile stress.
Abstract:
A method of forming a transistor with self-aligned source and drain extensions in close proximity to a gate dielectric layer of the transistor comprises forming a gate stack on a substrate, implanting a dopant into regions of the substrate adjacent to the gate stack, wherein the dopant increases the etch rate of the substrate and defines the location of the source and drain extensions, forming a pair of spacers on laterally opposite sides of the gate stack that are disposed atop the doped regions of the substrate, etching the doped regions of the substrate and portions of the substrate subjacent to the doped regions, wherein an etch rate of the doped regions is higher than an etch rate of the portions of the substrate subjacent to the doped regions, and depositing a silicon-based material in the etched portions of the substrate.
Abstract:
A method and apparatus to improve the contact formation of salicide and reduce the external resistance of a transistor is disclosed. A gate electrode is formed on a surface of a substrate. A source region and a drain region are isotropically etched in the substrate. A Silicon Germanium alloy is doped in situ with Boron in the source region and in the drain region. Silicon is deposited on the Silicon Germanium alloy. Nickel is deposited on the Silicon. A Nickel Silicon Germanium silicide layer is formed on the Silicon Germanium alloy. A Nickel Silicon silicide layer is formed on the Nickel Silicon Germanium silicide layer.
Abstract:
A method to selectively etch, and hence pattern, a semiconductor film deposited non-selectively is described. In one embodiment, a carbon-doped silicon film is deposited non-selectively such that the film forms an epitaxial region where deposited on a crystalline surface and an amorphous region where deposited on an amorphous surface. A four-component wet etch mixture is tuned to selectively etch the amorphous region while retaining the epitaxial region, wherein the four-component wet etch mixture comprises an oxidizing agent, an etchant, a buffer and a diluent.