Abstract:
The invention relates to a DLL circuit for providing an adjustable time delay of a periodic input signal, said circuit having controllable delay elements which are connected in series and form a delay chain, having a phase detector in order to generate a control signal on the basis of the periodic input signal and a periodic signal which has been delayed by the delay chain, the delay of each of the delay elements being adjusted on the basis of the control signal, and having a selection unit which is respectively connected to one of the delay elements in order to apply an output signal from one of the delay elements to an output of the DLL circuit on the basis of a selection variable which has been provided, and a compensation circuit which modifies the selection signal such that an additional delay (which is caused at least by the selection unit) between the periodic input signal and the output signal from the DLL circuit is compensated for.
Abstract:
The invention describes a method for adjusting signal propagation times in a memory system in which a controller is connected to at least one memory chip via a plurality of connecting lines for the purpose of transmitting control and data signals and at least one time reference signal. In line with the invention, the propagation time differences between connecting lines are ascertained from the result of echo measurements. To this end a respective transmitted pulse is applied to one end, selected as the transmission end, of the connecting lines in question, while the other end of the connecting lines in question is respectively terminated with a reflective termination. At the transmission end, the echo time which elapses between one edge of the transmitted pulse and the appearance of this edge's echo reflected from the other end is measured. On the basis of the ascertained propagation time differences, regulatable delay devices are set in order to compensate for these propagation time differences. The subject matter of the invention is also circuit arrangements for performing this method.
Abstract:
The invention relates to a memory controller for the exchange of data between a digital memory arrangement (RAMs) and a data processing device, comprising a distributor circuit, to be connected to the data processing device, and a plurality m≧2 of parallel transfer blocks, each of which is constructed for transmitting data words which in each case consist of n parallel data bits. According to the invention, in at least one group of p≧2 transfer blocks, only one of the transfer blocks is configured as a master for the transfer of strobe signals by this transfer block. All other transfer blocks of the group are in each case configured as a slave in that the strobe terminals with this transfer block provided for transmitting the strobe signal to the distributor circuit are connected to the strobe terminals of the master which are provided for transmitting the strobe signal to the distributor circuit.
Abstract:
A device for the regulated delay of a clock signal is proposed, which comprises a delay means in order to generate a delayed clock signal, and comparison means for the phase comparison of the delayed clock signal with a reference clock signal. The reference clock signal is in this connection preferably formed by the clock signal or is derived therefrom. On the basis of a comparison signal generated by the comparison means, a digital control signal is generated for controlling the delay means. The comparison means are configured so as to generate the comparison signal as a digitally coded signal that has a pulse duty ratio and a frequency that are determined by a further clock signal that is generated independently of the first clock signal, and that preferably has twice the frequency of the first clock signal.
Abstract:
A psuedostatic memory circuit is selected by a memory selection signal. A control circuit, in a first operating mode, carries out a refresh of the memory area at a refresh address after reception of the refresh request signal by generation of a refresh signal if the memory circuit is deselected or if, in the event of selection of the memory circuit by the memory selection signal, the access to the memory area is ended before the generation of a further refresh request signal. The control circuit, in a second operating mode, interrupts an access to the memory area for the writing and read-out of data and carries out a refresh of the memory area by generation of a refresh signal if the memory circuit is selected and a further refresh request signal is received before the ending of the access to the memory area.
Abstract:
A calibration apparatus is provided for adjusting the relative phase between two signals received at a memory chip, the two signals being generated such that they are synchronized with one another in a controller and are transmitted to the memory chip via separate lines. The calibration apparatus comprises a measuring device, which is arranged in the memory chip and is designed for measuring the relative phase between the two received signals, and a feedback loop containing a phase-controlling correction device. The measuring device is designed for generating an item of control information indicating the deviation of the measured relative phase from a defined tolerance range. The correction device responds to the control information to compensate for the deviation. The correction device is arranged in the controller and is designed for influencing the relative phase between the two signals to be transmitted to the memory chip. The feedback loop contains a signal connection leading from the memory chip to the controller.
Abstract:
The invention relates to a semiconductor memory module having a plurality of memory chips and at least one buffer chip, which drives clock signals and command and address signals to the memory chips and also drives data signals to, and receives them from, the memory chips via a module-internal clock, address, command and data signal bus. The buffer chip forms an interface to an external memory main bus and the memory chips are arranged in at least one row. The memory chips have separate writing and reading clock signal inputs for receiving the clock signals and the clock signal lines are routed in at least one loop, via the memory chips, from the buffer chip to the end of each row and from there back to the buffer chip
Abstract:
The invention relates to a semiconductor memory module having a plurality of memory chips arranged next to one another in a row. The memory module has a module-internal clock, command/address and data bus which transfers clock signal, command and address signals and also data signals from a memory controller device to the memory chips and data signals from the memory chips to the memory controller device. The memory module has respective clock, command/address and data signal lines. The clock signal lines comprise two differential clock signal lines which, at their end opposite to the memory controller device are either open or connected to one another by a short-circuiting bridge. The memory chips, during a write operation, synchronize the write data with the clock signal running from the memory controller device to the end of the clock signal line and, during a read operation, output the read data synchronously with the clock signal reflected from the open or short-circuited end of the clock signal lines.
Abstract:
The invention relates to a semiconductor memory module having at least one memory chip and a buffer chip, which drives clock, address and command signals to the memory chip and drives data signals to, and receives them from, the memory chip via a module-internal clock, address, command and data bus. The buffer chip forms an interface to an external memory main bus. The data bus lines and/or the clock, command and address bus lines are respectively connected to the buffer chip at their two ends and are capable of being driven by the buffer chip from these two ends. Control means are being provided and set up in such a manner that they respectively match the directions of propagation of the data signals and of the clock, command and address signals on the corresponding bus lines during writing and reading.
Abstract:
The invention relates to a method for producing structures on the surface of a semiconductor wafer, in which after the generation of a primary layout corresponding to the structures to be produced in accordance with predetermined desired physical parameters of the structures, calculation of the parasitic fault parameters that would result from the semiconductor structures after production using the primary layout, correction of the layout to suit the results of the step of calculating the parasitic fault parameters, and production of a mask based on the layout that has been corrected to suit the parasitic fault parameters, the surface of a semiconductor wafer is structured using an etching process. The structuring process leads to production- or technology-dictated deviations from the shapes that are produced on the mask based on the corrected layout, and the primary layout is corrected on the basis of the production- or technology-dictated deviations of the structures.