Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to secreted and transmembrane polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention concerns isolated nucleic acid molecules encoding the novel TIE ligands NL1, NL5, NL8, and NL4, the proteins encoded by such nucleic acid molecules, as well as methods and means for making and using such nucleic acid and protein molecules.
Abstract:
Tissue plasminogen activator (t-PA) zymogens and variants are prepared, including a fibrinolytically active variant of t-PA that has an amino acid alteration at a site within the protease domain of t-PA as compared with the corresponding wild-type t-PA, which alteration renders the variant zymogenic in the presence of plasmin-degraded fibrinogen, and/or fibrin (or plasma clot) specific, as compared to the corresponding wild-type t-PA. DNA sequences can be prepared that encode the zymogens and variants, as well as expression vectors incorporating the DNA sequences, and host cells transformed with the expression vectors. The zymogens and variants may be used in a pharmaceutical preparation to treat a vascular disease or condition or to prevent fibrin deposition or adhesion formation or reformation in mammals.
Abstract:
A system allows for rapid and specific induction of individual genes in eukaryotic cells using a chimeric transcriptional activator that is responsive to hormone inducer. Upon addition of the hormone, cytoplasmic transcriptional activator localizes to the nucleus and subsequently binds to promoters containing sequences that bind to its DNA-binding domain. Genetic modifications allow for rapid and specific degradation of a targeted protein upon addition of hormone by means of a regulated degron method that utilizes a protease variant. This system is useful for discovering new compounds by high throughput screening when introducing compound libraries to these protein-depleted cells.
Abstract:
Methods and kits for classifying patients having diffuse large B-cell lymphoma (DLBCL) based upon expression of a plurality of genes are disclosed. Real-time quantitative RT-PCR can be used to measure expression values. Correlating expression values of the plurality of genes in a tumor sample from the patient to reference expression values obtained from DLBCL patients can stratify patients in the classification groups. The methods and kits can be used to predict overall patient survival.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to secreted and transmembrane polypeptides and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.